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A B S T R A CT  

In this paper, a non-linear mathematical model of the Ebola virus disease with detection rate is 

proposed and analyzed. The whole population under consideration is divided into five compartments 

e.g. susceptible, latently infected, infected undetected, infected detected, and recovered to study the 

transmission dynamics of the Ebola virus disease. Based on the immunity level, susceptible individuals 

move to exposed class or directly to infected detected class once they come into contact with an 

infective. This has been incorporated through the progression rate which is slow. The equilibria of the 

model and the basic reproduction number R0 are computed. It is observed that the disease-free 

equilibrium of the model is locally asymptotically stable when R0<1. The model exhibits forward 

bifurcation under certain restrictions on parameters, which indicate that the model has a single endemic 

equilibrium for R0<1. This suggests that an accurate estimation of parameters and the level of control 

measures are required to reduce the infection prevalence of the Ebola virus in the endemic region and 

just R0<1 is enough to eliminate the disease from the population. R0 needs to be lowered much below 

one to confirm the global stability of the disease-free equilibrium. Numerical simulation is performed 

to demonstrate the analytical results. It is found that the increase in the rate of detection rate leads to a 

decrease in the threshold value of R0. Numerical simulations have been carried out to support the 

analytic results. 
 

Keywords: Nonlinear system, Reproduction number, Sensitivity and Bifurcation analysis. 

1 Introduction  

The disease Ebola virus epidemic first broke out in 1976 in two countries; Nzaire (a town in South Sudan) 

and Yamuku in Democratic Republic of Congo at a village near the Ebola river [9,11] though the Filoviruses 

was first discovered in 1969.7 Initially, the virus was thought to be native to East Africa [1].In recent time, 

the outbreaks of it have shown epicenters outside this region and may be attributed to the migratory effect 

of the bats [4]. Other than the fact that the bats potentially migrate in epidemic epicenters; there are frequent 

epidemic outbreaks in countries undergoing civil strife or emerging from clash states in East and Western 

Africa. These are also countries with poor socioeconomic status, suggesting ill-prepared public health 

responses to the epidemics. Internationally, however, travelling including ambulance of infected people has 

been the mode of spread to Europe and the USA [7]. The risk to EVD in children is attributed to contact 

with their sick parent(s) which can either be vertically spread through breast-feeding has also been described 

or horizontally transmission, through caretakers and relatives. It was reported by [12] that the pediatric 

EVD data from various recent outbreaks [8], these data suggests that the proportion of children infected 

has varied in different settings and overtime. For instance, the proportions of children involved was 

27/315(9%) in the Zaire EVD in 1995, 90/218 (41%) in Gulu, Uganda (Sudan EVD) in 2000–2001and 

147/823 (18%) in the current outbreak in the 4 most affected West African countries as of August 2014.9 

Furthermore, data from Gulu in Uganda precisely, indicated that female children had a higher risk of 
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developing EVD compared with their male counterparts [24]. In Gulu, Uganda it was observed that 

children were in isolation rooms and in contact with their EVD-infected parents [24] but, the pediatric 

EVD’s sparing nature is attributed to low-risk exposures [25].  

The outbreak of Ebola Virus Disease in West Africa happens to be the most severe in recorded history [9]; 

hence, there is a need to explore the dynamics of this disease through mathematical modeling, in order to 

control further outbreak of the disease in World [3]. Several researchers have developed some mathematical 

models to better improve our understanding of the dynamics and spread of Ebola Virus Disease in order 

to curb its prevalence and curtain the incessant outbreaks of the virus [3,7]. This research was formulated 

and analyzed a mathematical model that studied the effect of each parameter and impart of detection rate 

on the dynamical spread of Ebola virus diseases in the population. 

2 Mathematical Model 

The study uses five (5) compartmental deterministic mathematical model of the S, L, Iu, Id, R to have better 

understanding of the dynamical spread of Ebola virus diseases in the population. The population size 𝑁(𝑡) 

is sub–divided into sub–classes of individuals who are Susceptible 𝑆(𝑡), Latent 𝐿(t), Infected 

undetected 𝐼𝑢(𝑡), Infected detected 𝐼𝑑(𝑡), and Recovered 𝑅(𝑡), 

 Where 

𝑁(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐼𝑢(𝑡) + 𝐼𝑑(𝑡) + 𝑅(𝑡)       (1) 

Susceptible individual is a member of a population who is at risk of becoming infected by a disease, Ebola 

virus diseases. The population of susceptible individuals increases by the recruitment of active individuals 

at the rate𝜋. The population decreased by natural death at a rate 𝜇 also, by force of infection of infected 

detected individuals𝜆.  Also, Latent individual is a member of a population who is infected individual but 

not infectious of the disease Ebola virus. The population of latent individuals increases through the product 

of slow progression and infection of susceptible and are assumed to show no disease symptoms at this time. 

The population of latent class diminished by the progression rate of infected individual to infectious class 

𝐼𝑑, disease induced death and natural death at a rate𝜇. In addition, Infected detected individual is a member 

of a population who is infected and capable of transmitting the disease, Ebola virus in the population. The 

population of infected detected individuals increases through the infection of susceptible, detection rate of 

infected individual and the progression rate of infected individual to infectious class 𝐼𝑑from latent. The 

population is decreased by recovery rate of infectious, natural death, disease induced death and endogenous 

reactivation with progression rate (𝜏2), (𝜇), (𝛿) and (𝛼𝜏1) respectively. They are those under treatment or 

isolation center. Furthermore, Infected undetected individual is a member of a population who is infected 

and capable of transmitting the disease, EVB. The population of infected undetected individuals increases 

through the endogenous reactivation with progression rate. The population is decreased by recovery rate 

of infected, natural death, disease induced death and detection rate (𝜏3), (𝜇), (𝛿) and (𝑟) respectively. Finally, 

Recovered individual is a member of a population who recovered from the disease. The population of 

recovered individual is increased by the treatment of infectious individual at a rate (𝜏2) and treatment of 

infected individual at a rate (𝜏3), this population later decreased by natural death at the rate (𝜇). 

The diagrammatic representation of the Ebola virus disease model dynamics can be seen in Figure 1 and 

the corresponding model is governed by the following system of nonlinear ordinary differential equations 

(1). Also, the associated variables and parameters of the model are tabulated in Table 1 and Table 2 

respectively. 
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2.1 Model Equation 

𝑑𝑆

𝑑𝑡
= 𝜋 − 𝜆𝑆(𝑡) − 𝜇𝑆(𝑡)

𝑑𝐿

𝑑𝑡
= 휀𝜆𝑆(𝑡) − (𝜏1 + 𝛿𝐿 + 𝜇)𝐿(𝑡)

𝑑𝐼𝑑

𝑑𝑡
= (1 − 휀)𝜆𝑆(𝑡) − (𝜏2 + 𝛿𝐼𝑑 + 𝜇)𝐼𝑑(𝑡) + 𝑟𝐼𝑢(𝑡) + (1 − 𝛼)𝜏1𝐿(𝑡)

𝑑𝐼𝑢

𝑑𝑡
= 𝛼𝜏1𝐿(𝑡) − (𝑟 + 𝜏3 + 𝛿𝐼𝑈 + 𝜇)𝐼𝑢(𝑡)

𝑑𝑅

𝑑𝑡
= 𝜏2𝐼𝑑(𝑡) + 𝜏3𝐼𝑢(𝑡) − 𝜇𝑅(𝑡) }

 
 
 

 
 
 

            (2) 

 

 

 

Figure 1: Schematic diagram for Ebola virus disease dynamics. 

 

Table 1.  Description of Variables 

Variables Definitions 

S Susceptible individuals 

𝐿 Latently infected individual 

𝐼𝑢 

𝐼𝑑 

Infected individual undetected 

Infected individual detected 

𝑅 Recovered individual 
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Table 2.  Description of parameters 

Parameters Definitions 

𝜏1 
𝜏2 

𝜏3 

Progression rate of infected individual to infectious individual 

Recovery rate of infected detected individual due to treatment 

Recovery rate of infected undetected individual due to treatment 

𝑟 
Detection rate of infected undetected individual 

𝜋 Recruitment rate 

𝜇 Natural death rate 

𝛼 Endogenous reactivation rate 

𝜃 Modification parameter 

𝛿 Induced mortality rate  

𝛽 Effective contact rate 

N 

𝜆 

휀 

Total population 

Force of infection 

Slow progressor 

3 Basic Property 

3.1 Positivity and Boundedness of Solutions 

Since model (2) monitors human population, all the parameters are non-negative. Therefore, it is needful 

to show that all the state variables are also non-negative for all time t > 0. 

3.1.1 Theorem 1 

The state variables, S(t); L(t); IU(t); Id(t); and R(t), of the autonomous version of the Ebola Virus disease of 

model (2), with the non-negative initial data, remain non-negative for all t > 0.  

3.1.2 Proof 

Recalling the equation in system (2)   

𝑑𝑆

𝑑𝑡
= 𝜋 − 𝜆𝑆(𝑡) − 𝜇𝑆(𝑡) 

𝑑𝐿

𝑑𝑡
= 휀𝜆𝑆(𝑡) − (𝜏1 + 𝛿𝐿 + 𝜇)𝐿(𝑡) 

𝑑𝐼𝑑
𝑑𝑡

= (1 − 휀)𝜆𝑆(𝑡) − (𝜏2 + 𝛿𝐼𝑑 + 𝜇)𝐼𝑑(𝑡) + 𝑟𝐼𝑢(𝑡) + (1 − 𝛼)𝜏1𝐿(𝑡) 

𝑑𝐼𝑢
𝑑𝑡

= 𝛼𝜏1𝐿(𝑡) − (𝑟 + 𝜏3 + 𝛿𝐼𝑈 + 𝜇)𝐼𝑢(𝑡) 

𝑑𝑅

𝑑𝑡
= 𝜏2𝐼𝑑(𝑡) + 𝜏3𝐼𝑢(𝑡) − 𝜇𝑅(𝑡)               (3) 

where  

 𝜆 =
𝛽(𝜃𝐼𝑑+𝐼𝑢)

𝑁
                       (4) 

One can see from the first equation of (3) that 

 
𝑑𝑆

𝑑𝑡
≥ −(𝜆 + 𝜇)𝑆(𝑡)          (5) 

So that, 
𝑑

𝑑𝑡
(𝑆(𝑡) 𝑒𝑥𝑝( 𝜇𝑡 + ∫ 𝜆(𝜛)𝑑𝜛

𝑡

0
)) ≥ 0        (6) 

From which follows that 

𝑆(𝑡) ≥ 𝑆(0) 𝑒𝑥𝑝( − (𝜇𝑡 + ∫ 𝜆(𝜛)𝑑𝜛
𝑡

0
)) > 0       (7) 
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It can be shown, using similar approach, that other state variables, L(t); Iu(t); Id(t); and R(t), are non-negative 

for all t > 0.  

Next, consider the biologically feasible region, define by 𝛤 ⊂ 𝑅+
5  

Where: 

𝛤 = {(𝑆, 𝐿, 𝐼𝑢, 𝐼𝑑 , 𝑅) ∈ 𝑅+
5 :𝑁 ≤

𝜋

𝜇
}        (8) 

It can be shown that 𝛤 is positively invariant region. 

3.1.3 Theorem 2 

 The region 𝛤is positively invariant with respect to the model (2) 

3.1.4 Proof: 

The rate of change of the total population is given by  
𝑑𝑁

𝑑𝑡
= 𝜋 − (𝑆 + 𝐿 + 𝐼𝑢 + 𝐼𝑑 + 𝑅)𝜇 − (𝐿 + 𝐼𝑢 + 𝐼𝑑)𝛿                (9) 

It results into the solution; 

𝑁(𝑡) = 𝑁(0) 𝑒𝑥𝑝( − 𝜇𝑡) +
𝜋

𝜇
(1 − 𝑒𝑥𝑝( − 𝜇𝑡))                (10) 

It follows that  

𝑁(𝑡) →
𝜋

𝜇
 as  𝑡 → ∞ 

In particular,  

 𝑁(𝑡) ≤
𝜋

𝜇
                    (11) 

 If 

 𝑁(0) ≤
𝜋

𝜇
                    (12) 

with respect to the Ebola Virus model (3). Hence, it suffices to consider the dynamics of the model in 𝛤. 

In this region, the Ebola Virus model can be considered as being mathematically well-posed [14]. 

4 Stability Property 

4.1 Disease Free Equilibrium (DFE) 

Disease free means when there is disease in the population, i.e, Iu = Id = 0. At equilibrium points, all 

compartments are set to be zero; 
𝑑𝑆

𝑑𝑡
=

𝑑𝐿

𝑑𝑡
=

𝑑𝐼𝑢

𝑑𝑡
=

𝑑𝐼𝑑

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0                            (13) 

Let 𝐸0 denotes the disease-free equilibrium. Thus; the model in (2) has disease free equilibrium given by 

                  (14) 

4.2 Endemic Equilibrium  

The endemic equilibrium of the model (2) is given below; 

𝑆∗ =
𝜋

𝜇𝑅0

𝐿∗ =
𝜀𝜋(𝑅0−1)

𝑑1𝑅0

𝐼𝑢
∗ =

𝛼𝜏1⥂𝜀𝜋(𝑅0−1)

𝐾1𝐾3𝑅0

𝐼𝑑
∗ =

(𝐾1𝐾3(1−𝜀)+𝐾3𝜏1𝜀(1−𝛼)+𝑟𝛼𝜏1𝜀)𝜋(𝑅0−1)

𝐾1𝐾2𝐾3𝑅0

𝑅∗ =
(𝜏2(𝐾1𝐾3(1−𝜀)+𝐾3𝜏1𝜀(1−𝛼))+𝛼𝜏1𝜀(𝑟𝜏2+𝑑2𝜏3))𝜋(𝑅0−1)

𝐾1𝐾2𝐾3𝜇𝑅0 }
 
 
 
 

 
 
 
 

       (15) 

 

Where 
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𝐾1 = 𝜏1 + 𝛿𝐿 + 𝜇 

𝐾2 = 𝜏2 + 𝛿𝐼𝑑 + 𝜇 

𝐾3 = 𝑟 + 𝜏3 + 𝛿𝐼𝑢 + 𝜇 

4.3 Basic Reproduction Number (𝑹𝟎) 

Using next generation matrix [10],[13] the non-negative matrix F (new infection terms) and non-singular 

matrix V (other transferring terms) of the model are given, respectively by; 

 

𝐹 = (

𝛽(𝜃𝐼𝑑+𝐼𝑢)𝑆

𝑁

0
0

)and 𝑉 = (

(𝜏1 + 𝛿𝐿 + 𝜇)𝐿
(𝜏2 + 𝛿𝐼𝑑 + 𝜇)𝐼𝑑 − 𝑟𝐼𝑢 − (1 − 𝛼)𝜏1𝐿

(𝑟 + 𝜏3 + 𝜇 + 𝛿𝐼𝑢)𝐼𝑢 − 𝛼𝜏1𝐿
)                           (16)

 

After taking partial derivatives of 𝐹 and𝑉, we have: 

 𝐹 = (
0 휀𝛽 휀𝛽𝜃
0 (1 − 휀)𝛽 (1 − 휀)𝛽𝜃
0 0 0

) and 𝑉 = (

𝐾1 0 0
−(1 − 𝛼)𝜏1 −𝑟 𝐾2
−𝛼𝜏1 𝐾3 0

)   (17) 

Thus; 

𝑅0 =
𝛽(𝜃𝜀𝐾3𝜏1(1−𝛼)+𝜃𝐾1𝐾2(1−𝜀)+𝛼𝜀𝜏1(𝐾2+𝜃𝑟))

𝐾1𝐾2𝐾3
           (18)     

The threshold quantity 𝑅0 is the basic reproduction number of the model system (2) for Ebola infection. 

It is the average number of new secondary infections generated by a single infected individual in his or her 

infectious period. [1]. 

4.4 Local Stability 

4.4.1 Theorem 3 

The disease-free equilibrium of the modeled in equation (2) is locally asymptotically stable (LAS) if 𝑅0< 1 

and unstable if 𝑅0> 1. 

4.4.2 Proof: 

To determine the local stability of𝐸0, the following Jacobian matrix is computed corresponding to 

equilibrium point𝐸0. 

Considering the stability of the disease-free equilibrium at the critical point (
𝜋

𝜇
, 0,0,0,0). 

𝐽 =

(

 
 

−𝜇 0 −𝛽 −𝛽𝜃 0
0 −𝐾1 휀𝛽 휀𝛽𝜃 0
0 (1 − 𝛼)𝜏1 𝑟 + (1 − 휀)𝛽 − 𝐾2 −𝐾2 0
0 𝛼𝜏1 −𝐾3 0 0
0 0 𝜏3 𝜏2 −𝜇)

 
 

              (19) 

A necessary and sufficient condition for local asymptotic stability is for the real part of the eigenvalue to be 

in the negative half plane [10]. Thus, it can show that𝐽(휀0)  given by (19) has eigenvalues all have a negative 

real part. 

To this purpose, it is obvious from (19) that −𝜇 (twice) are the two of the five eigenvalues of 𝐽(𝐸0) since 

the first and fifth columns contain only the diagonal terms. Hence, the other three eigenvalues can be 

obtained from the sub-matrix of 3 by 3 matrix, 𝐽∗(𝐸0)  given by 

𝐽∗ = (

−𝐾1 휀𝛽 휀𝛽𝜃
(1 − 𝛼)𝜏1 𝑟 + (1 − 휀)𝛽 − 𝐾2 −𝐾2
𝛼𝜏1 −𝐾3 0

)                (20) 

 

In what follows, the characteristic equation of  𝐽∗(𝐸0) is of the form |𝐽∗ − 𝜆| = 0  is given by: 
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𝐽∗ = (

−𝐾1 − 𝜆 휀𝛽 휀𝛽𝜃
(1 − 𝛼)𝜏1 𝑟 + (1 − 휀)𝛽 − 𝐾2 − 𝜆 −𝐾2
𝛼𝜏1 −𝐾3 −𝜆

)     (21) 

Simplifying matrix (21), can be written as: 

 

𝐵3𝜆
3 + 𝐵2𝜆

2 + 𝐵1𝜆 + 𝐵0 = 0        (22) 

And 

𝐵0 = 𝐾1𝐾2𝐾3 − 𝐾1(1 − 휀)𝛽𝜃𝐾3 − 휀𝛽𝐾2𝛼𝜏1 − 휀𝛽𝜃𝐾3(1 − 𝛼)𝜏1 − 휀𝛽𝜃𝛼𝜏1𝑟 

It is easy to see that 𝐵0 can be written in terms of 𝑅0 as : 

𝐵0 = 1 −
𝛽(𝜃𝜀𝐾3𝜏1(1−𝛼)+𝜃𝐾1𝐾2(1−𝜀)+𝛼𝜀𝜏1(𝐾2+𝜃𝑟))

𝐾1𝐾2𝐾3
      (23) 

If in (23) 𝑅0 < 1 , then 𝐵0 > 0. Since the coefficients𝐵𝑖 , i = 1,2,3 and the Hurwitz matrices of the 

polynomial (22) are positive, using Routh-Hurwitz criterion (see,[15]), all the eigenvalues of (22) have 

negative real parts. Therefore, the disease-free equilibrium, 휀0, is stable. Otherwise, whenever 𝑅0 > 1, 

then𝐵0 < 0. By Descartes’ rule of signs [16], there exists one eigenvalue with positive real part. Hence, 휀0  

is unstable for𝑅0 > 1 . 

The implication of Theorem 3 is that reduction or elimination of Ebola Virus diseases governed by model 

(2) can be eliminated from the population whenever an influx by infected individual is small such that 

𝑅0 < 1. 

4.5 Global Stability 

4.5.1 Theorem 4 

The disease free-equilibrium of the system in (2) is globally asymptotically stable (GAS) whenever  

𝑅0 < 1and unstable if𝑅0 > 1. 

4.5.2  Proof: 

Consider the linear Lyapunov function 𝑉: 𝛤 → 𝑅0defined by 

𝑉 = 𝐴1𝐿(𝑡) + 𝐴2𝐼𝑑(𝑡) + 𝐴3𝐼𝑢(𝑡)       (24) 

where 𝐴1 =
(1−𝛼)𝜏1𝐾3+𝑟𝛼𝜏1

𝐾1𝐾3
, 𝐴2 = 1and 𝐴3 =

𝑟

𝐾3
The time derivative of (24) along the solution path of 

the system (2) is given by 

𝑉 ′ = [
(1−𝛼)𝜏1𝐾3+𝑟𝛼𝜏1

𝐾1𝐾3
] (휀𝜆𝑆(𝑡) − 𝐾1𝐿(𝑡)) + ((1 − 휀)𝜆𝑆(𝑡) − 𝐾2𝐼𝑑(𝑡) + 𝑟𝐼𝑢(𝑡) + (1 − 𝛼)𝜏1𝐿(𝑡))    +

𝑟

𝐾3
(𝛼𝜏1𝐿(𝑡) − 𝐾3𝐼𝑢(𝑡))          (25) 

𝑉 ′ =
(1 − 𝛼)𝜏1휀𝜆

𝐾1
𝑆(𝑡) +

𝑟𝛼𝜏1휀𝜆

𝐾1𝐾3
𝑆(𝑡) +

𝐾2𝛼𝜏1휀𝜆

𝜃𝐾1𝐾3
𝑆(𝑡) +

(1 − 휀)𝐾2𝜆

𝐾3
𝑆(𝑡) − 𝐾2𝐼𝑑(𝑡) 

𝑉 ′ =
(1 − 𝛼)𝜏1휀𝛽𝜃

𝐾1
𝐼𝑑(𝑡) +

𝑟𝛼𝜏1휀𝛽𝜃

𝐾1𝐾3
𝐼𝑑(𝑡) +

𝐾2𝛼𝜏1휀𝛽

𝐾1𝐾3
𝐼𝑑(𝑡) +

(1 − 휀)𝐾2𝛽𝜃

𝐾3
𝐼𝑑(𝑡) − 𝐾2𝐼𝑑(𝑡) 

𝑉 ′ ≤ [
𝛽(𝜃휀𝐾3𝜏1(1 − 𝛼) + 𝜃𝐾1𝐾2(1 − 휀) + 𝛼휀𝜏1(𝐾2 + 𝜃𝑟))

𝐾1𝐾3
− 𝐾2] 𝐼𝑑(𝑡) 

𝑉 ′ ≤ 𝐾2[𝑅0 − 1]𝐼𝑑(𝑡)         (26) 

Thus, 𝑉 ′ ≤ 0  if 𝑅0 ≤ 0 with 𝑉 ′ = 0if and only if 𝐼𝑑 = 0. This shows that as 𝑡 → ∞, then (S(t), L(t), Iu(t), 

Id(t), R(T)) →(
𝜋

𝜇
, 0,0,0,0). It follows that the largest compact invariant set in     {(S(t), L(t), Iu(t), Id(t), 

R(T)) ∈ 𝛤:𝑉 ′=0} is the singleton𝐸0. Therefore, by LaSalle's Invariance Principle [17], the DFE given by 𝐸0 

is GAS in 𝛤 if 𝑅0 ≤ 0. 
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The implication of Theorem 4 is that reduction or elimination of Ebola Virus disease is independent of 

the initial sizes of the sick people in the population. Hence, Ebola Virus disease can be eliminated if the 

associated reproduction number is less than unity. 

4.6 Bifurcation Analysis 

Bifurcation analysis is used to explore how the asymptotic stability of disease-free equilibrium is exchanged 

for asymptotic stability of endemic equilibrium of model (2) as the threshold quantity, Ro, cross the unity. 

In other words, to investigate the bifurcation at Ro = 1, using a center manifold theory of bifurcation 

analysis described by [18], used in some literatures like [19], [20], [21],[22], [23].  

Choosing 𝛽 as the bifurcation parameter, then at Ro = 1. 

𝑅0 =
𝛽(𝜃𝜀𝐾3𝜏1(1−𝛼)+𝜃𝐾1𝐾2(1−𝜀)+𝛼𝜀𝜏1(𝐾2+𝜃𝑟))

𝐾1𝐾2𝐾3
= 1      (27) 

 

then, 

𝛽∗ =
𝐾1𝐾2𝐾3

(𝜃𝜀𝐾3𝜏1(1−𝛼)+𝜃𝐾1𝐾2(1−𝜀)+𝛼𝜀𝜏1(𝐾2+𝜃𝑟))
      (28) 

So that the disease-free equilibrium, Do, is locally stable when𝛽 < 𝛽∗, and is unstable when𝛽 > 𝛽∗, this,𝛽∗, 

is bifurcation value.  

The linearized matrix of the system (2) around the disease-free equilibrium Eo and evaluated at 𝛽∗ is given 

by; 

𝐽(𝐸0, 𝛽
∗) =

(

 
 

−𝜇 0 −𝛽∗ −𝛽∗𝜃 0
0 −𝐾1 휀𝛽∗ 휀𝛽∗𝜃 0
0 (1 − 𝛼)𝜏1 𝑟 + (1 − 휀)𝛽∗ − 𝐾2 −𝐾2 0
0 𝛼𝜏1 −𝐾3 0 0
0 0 𝜏3 𝜏2 −𝜇)

 
 

   29) 

 

The eigenvalues (𝜆) , of 𝐽(𝐸𝑜, 𝛽
∗)given by (29) are the roots of the characteristic equation of the form: 

(𝜆 + 𝜇)2𝑃(𝜆) = 0         (30) 

Where 𝑃(𝜆)is a polynomial of degree three whose roots are real and negative except one zero eigenvalue. 

4.6.1 Determination of Right Eigen-vector and Left Eigen-vector 

The right eigenvector,𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5)
𝑇 , associated with this simple zero eigenvalue can be 

obtained from 𝐽(𝐷𝑜, 𝛽
∗)𝑤 = 0. Furthermore, the left eigenvector, 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5), corresponding 

to the simple zero eigenvalue of (29) is obtained from 𝑣𝐽(𝐷𝑜, 𝛽
∗) = 0 

4.6.2 Computation of Bifurcation Coefficient 

The direction of the bifurcation at Ro = 1 is determined by the signs of bifurcation coefficient “a” and “b”, 

obtained from the above partial derivatives, given, respecting, by  

𝑎 =
𝐷𝐾1[𝐴𝐶+⥂𝐵𝐾1𝐾2𝐾3𝜃(1−𝜀)]

𝐶𝑌2𝜋
𝑣2𝑤2

2       (31) 

Similarly, 

𝑏 =
𝜀𝐾2𝛼𝜏1(1+𝜃)−𝜃𝑌

𝐾2𝐾3
+
𝜀𝐾1𝐾2𝜃𝛼𝜏1(1−𝜀)(1+𝜃)−𝐾1𝜃

2𝑌(1−𝜀)

𝐾2𝑌−𝐾1𝐾2𝐾3𝜃(1−𝜀)
𝑣2𝑤2    (32) 

Where: 

𝐴 = 𝐾1𝑌 − 𝐾1𝐾2𝛼𝜏1(1 − 휀) 

𝐵 = 𝐾1𝐾2𝛼𝜏1(1 − 휀) − 𝐾1𝑌 

𝐶 = 𝐾1𝐾2𝐾3𝜃(1 − 휀) − 𝐾2𝑌 

𝑌 = 𝜃휀𝐾3𝜏1(1 − 𝛼) + 𝜃𝐾1𝐾2(1 − 휀) + 𝛼휀𝜏1(𝐾2 + 𝜃𝑟)      (33) 
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By numerical evaluation, using value of parameter in Table 3, it was found that 𝑎 < 0 and𝑏 > 0, which 

follows from the theorem of [18] that the model (2) exhibits a supercritical (forward) bifurcation and the 

endemic equilibrium E* is locally asymptotically stable. 

Table 3.  Parameters Value and Source  

Parameters Value                             Baseline           Source          

𝜏1 
𝜏2 

𝜏3 

0.9 – 0.4                             0.6                     [2, 4] 

 0.9 – 0.4                            0.7                     [5, 12] 

0.9 – 0.4                             0.7                     [9,12] 

𝑟 
0.2 – 0                                0.05                   [5, 11] 

𝜋 1 – 0.2                                0.9                     [4, 6] 

𝜇 0.2 – 0                                0.1                     [2,5] 

𝛼 0.8 – 0.4                              0.5                    Assumed 

𝜃 0.9 – 0.2                             0.6                     [2, 5] 

𝛿 0.2 – 0                                0.01                   Assumed 

𝛽 0.9 – 0.2                              0.7                    [6, 12] 

휀 0.4 – 0.1                             0.2                     [10, 12] 

5 Sensitivity Analysis 

To determine how changes in parameters affect the transmission and spread of the disease, a sensitivity 

analysis of model (2) is carried out in the sense of [10],[17]. This was done to examines changing effects of 

the model parameters with respect to basic reproduction number, Ro, of the model (2). 

Definition 1. The normalized forward-sensitivity index of a variable, v, depends differentiable on a 

parameter, p, is   defined as: 

𝛶𝑝
𝑣 =

𝜕𝑣

𝜕𝑝
×
𝑝

𝑣
          (34) 

In particular, sensitivity indices of the basic reproduction number, Ro, with respect to the model parameter. 

The following results were obtained using the parameter value in  

Table 4. Sensitivity indices with the Parameters 

Parameter Sign 

𝛽 Positive  

𝜃 Positive 

휀 Negative 

𝛼 Positive 

𝜏1 Positive 

𝜏2 Negative 

𝜏3 Negative 

𝑟 Negative 

 

The positive sign of S.I of Ro to the model parameters shows that an increase (or decrease) in the value of 

each of the parameter in this case will lead to an increases (or decrease) in Ro of the model (2) and 

asymptotically results into persistence (or elimination) of the disease in the community . On the contrary, 

the negative sign of Ro to the model parameters indicates that an increase (or decrease) in the value of each 

of the parameter in this case leads to a corresponding decrease (or increases) on Ro of the model (2). Hence, 

with sensitivity analysis, one can get insight on the appropriate intervention strategies to prevent and control 

the spread of the disease described by model (2). 
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Table 5. Sensitivity value with the Parameters 

Parameter Sign 

𝛽 + 1 

𝜃 + 0.7361563518 

𝛼 + 0.2159609121 

𝜏1 + 0.03905979791 

𝑟 - 0.04219721649 

𝜏2 
- 0.02054932245 

𝜏3 - 0.02054932245 

휀 -  0.01768264309 

The most sensitive parameter is𝛽follow by𝜃and the least sensitive parameter is 휀. 

All these eight parameters play an important role in the dynamical spread of the Ebola Virus disease in the 

population. The effect of some of them will be graphically illustrated below.  

6 Results and Discussion 

Numerical simulation was carried out by MAPLE 18 software using Runge-Kutta method of order four 

with the set of parameter values given in Table 3. Dynamic spread of Ebola is checked simultaneously on 

Recovered, Susceptible, Infected undetected, Infected detected and Latent individuals since the spread of 

Ebola is a function of time. S(0) =7, Id(0) =0, Iu(0)=0, R(0)=0, L(0)=0 Figs 2-6 below are the results 

obtained from numerical simulation of the Ebola model with the dynamic spread. 

In this study, five (5) deterministic epidemiological model of (S, L, Iu, Id, R) are presented to gain insight 

into the dynamical spread of Ebola virus disease. Positivity of solution shows that, the model presented is 

mathematically and epidemiologically well posed. Local and global stability of the model shows that, 

disease-free equilibrium is asymptotically stable whenever the threshold quantity ‘𝑅0’ is less than unity and 

otherwise endemic when it is greater than unity.  

The sensitivity analysis reveals that eight (8) parameters plays an important role in the dynamical spread of 

Ebola Virus disease according to the model (2), the parameters are 𝜏1,𝛽,𝜃,휀,𝛼,𝑟,𝜏2 and 𝜏3. Four (4) were 

positive and four (4) were negative as it can be seen in Table 4 and Table 5, increasing those with positive 

index will result in the higher spread of the disease in the population, so effects must be made to keep it 

loss while increasing those with negative index will result in the reducing the spread of the disease in the 

population, so effects must be made to raise it up. 

The bifurcation analysis was a forward which shows that the disease can be control if all effect is put in 

place to force 𝑅0to be less than one. 

Figures. 2-5 of numerical simulation showed that, shows the behavior of some parameters on the dynamical 

spread of Ebola Virus diseases. 
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Figure 2(a) Effect of Progression rate of infected individual on susceptible class. 

 
Figure 2(b) Effect of Progression rate of infected individual on latent class. 

 
Figure 2(c) Effect of Progression rate of infected individual on infected undetected class. 
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Figure 2(d) Effect of Progression rate of infected individual on infected detected class. 

Figure 2a-d, shows the effect of progression rate of infected individual to infectious individual (𝜏1): Figure 

2a reveals it effect on susceptible individuals (S), as𝜏1increases S decreases with time, Figure 2b shows the 

effect of  𝜏1on latently infected individuals (L), as𝜏1increases L decreases with time, Figure 2cPointed out 

the effect of 𝜏1on infected undetected individuals (Iu), as𝜏1 increases Iu increases with time and Figure 2d 

depicted the effect of 𝜏1on infected detected individuals (Id), as𝜏1 increases Id increases with time. This 

confirmed the sensitivity analysis results. 

 
Figure 3(a) Impact of Slow progressor on latent class 
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Figure 3(b) Impact of Slow progressor on infected undetected class 

 

Figure 3(c) Impact of Slow progressor on infected detected class 

Figure 3a-c, reveals the impact of slow progressor (휀):Figure 3a depicted the effect of  휀on latently 

infected individuals (L), as 휀 increases L increases with time, Figure 3b shows the effect of 휀on infected 

undetected individuals (Iu), as휀 increases Iu increases with time and  Figure 3c pointed out the effect of 

휀on infected detected individuals (Id), as 휀 increases Id increases with time. Sensitivity analysis was 

established with this result. 

Figure 4a-b, pointed out the significant of detection rate of infected undetected individual     (𝑟): Figure 

4a reveals the effect of 𝑟on infected undetected individuals (Iu), as𝑟increases Iu decreases with time and 

Figure 4b shows the effect of 𝑟on infected detected individuals (Id), as𝑟increases Id increases with time. 

This is in agreement with the sensitivity and bifurcation analysis results. 
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Figure 4(a) Significant of detection rate of infected undetected individual on infected undetected class 

 
Figure 4(b) Significant of detection rate of infected undetected individual on infected detected class 

 

Figure 5a-c, shows the effects of endogenous reactivation rate on the population (𝛼):Figure 5a reveals it 

effect on susceptible individuals (S), as 𝛼 increases S decreases with time, Figure 5b  pointed out the effect 

of  on infected undetected individuals (Iu), as  decreases Iu increases with time, and Figure 5c Pointed out 

the effect of 𝛼 on infected undetected individuals (Id), as 𝛼 decreases Id increases with time.. 

 
Figure 5(a) Effect of endogenous reactivation rate on susceptible class 
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Figure 5(b) Effect of endogenous reactivation rate on infected undetected class 

 
Figure 5(c) Effect of endogenous reactivation rate on infected undetected class 

7 Conclusion 

In conclusion, reduction or elimination of Ebola Virus diseases governed by model (2) can be eliminated 

from the population whenever an influx by infected individual is small such that𝑅0 < 1, also reduction or 

elimination of Ebola Virus disease is independent of the initial sizes of the sick people in the population. 

Hence, Ebola Virus disease can be eliminated if the associated reproduction number is less than unity. The 

bifurcation analysis was a forward which shows that the disease can be control if all effect is put in place to 

force 𝑅0 to be less than one. The sensitivity analysis reveals that four (4) were positive, which are 𝜏1, 𝛽, 𝜃 

and, 𝛼;  increasing these one will result in the more spread of the disease in the population, all hand must 

be on deck to keep it loss. Four (4) were negative are 휀,𝑟,𝜏2 and 𝜏3; increasing those with negative index 

will result in the reducing the spread of the disease in the population, so effects must be made to raise it 

up. 
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