Structure and New Substructure of α-Ti2O3: X-ray Diffraction and Theoretical Study

Authors

  • Soumia Merazka Faculté de Chimie, Laboratoire Sciences des matériaux, Université des Sciences et de la Technologie Houari-Boumediene, USTHB, BP32 16111, El-Alia Bab-Ezzouar, Algérie. https://orcid.org/0000-0002-0833-1272
  • Lamia Hammoudi Faculté de Chimie, Laboratoire Sciences des matériaux, Université des Sciences et de la Technologie Houari-Boumediene, USTHB, BP32 16111, El-Alia Bab-Ezzouar, Algérie. https://orcid.org/0000-0003-1672-2393
  • Mohammed Kars Faculté de Chimie, Laboratoire Sciences des matériaux, Université des Sciences et de la Technologie Houari-Boumediene, USTHB, BP32 16111, El-Alia Bab-Ezzouar, Algérie. https://orcid.org/0000-0002-4031-8115
  • Mohamed Sidoumou Laboratoire de Physique Théorique et Interaction Rayonnement Matière, BP 270 Route de Soumaa, Université Blida1, Blida, Algérie. https://orcid.org/0000-0002-8341-7287
  • Thierry Roisnel CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Université de Rennes 1, France https://orcid.org/0000-0002-6088-4472

DOI:

https://doi.org/10.21467/jmm.8.1.3-11

Abstract

The Crystal structure of both α-Ti2O3 and its new substructure with a halved c-axis has been investigated by single-crystal X-ray diffraction and density functional theory (DFT) calculations. The α-Ti2O3 substructure described in the R-3m space group, reveals an unusual 12-fold high coordination of Ti atoms forming edge and face-sharing distorted hexagonal prisms TiO12 stacking along the c-axis. The Hubbard-corrections predict a close bandgap for both α-Ti2O3 and its substructure; whereas a comparative study of their relative stability indicates that the substructure is thermodynamically less stable.

Keywords:

Titanium oxide, CVT, X-ray diffraction, Crystal structure, Substructure, DFT

Downloads

Download data is not yet available.

References

J. L. Murray and H. A. Wriedt. The O-Ti (Oxygen-Titanium) system. J. Phase Equilib, Vol 8, pp. 148-165, 1987. https://doi.org/10.1007/BF02873201

H. Okamoto. O-Ti (Oxygen-Titanium). J. Phase Equilib. Diffus, Vol 32, pp. 473, 2011. https://doi.org/10.1007/s11669-011-9935-5

H. Nakastsugawa and E. Iguchi. Transition phenomenon in Ti2O3 using the discrete variational X α cluster method and periodic shell model. Phys Rev, Vol B56, pp. 12931-12938,1997 https://doi.org/10.1103/PhysRevB.56.12931

Y. Li. Weng, X. Yin, X. Yu, S. R. S. Kumar, N. Wehbe, H. Wu, H. N. Alshareef, S. J. Pennycook, B. H. B. Breese, J. Chen, S. Dong and T. Wu. Orthorhombic Ti2O3: A Polymorph-Dependent Narrow-Bandgap Ferromagnetic Oxide. Adv. Funct. Mater, Vol 28, pp. 1705657, 2018. https://doi.org/10.1002/adfm.201705657

J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen and T. Wu. High-Performance Photothermal Conversion of Narrow-Bandgap Ti2O3 Nanoparticles. Adv. Mater, Vol 29, pp. 603730, 2017. https://doi.org/10.1002/adma.201603730

R. E. Newnhan and Y. M. de Haan. Refinement of the α-A12O3, Ti2O3, V2O3 and Cr2O3 structures. Z. Krista, Vol 117, pp. 235-237, 1962. https://doi.org/10.1524/zkri.1962.117.2-3.235

C. E. Rice and W. R. Robinson. High-temperature crystal chemistry of Ti2O3: structural changes accompanying the semiconductor-metal transition. Acta Cryst, Vol B33, pp. 1342-1348, 1977. https://doi.org/10.1107/S0567740877006062

V. Singh and J. J. Pulikkotil. Electronic phase transition and transport properties of Ti2O3. J. Alloy and Compounds, Vol 658, pp. 430-434, 2016. https://doi.org/10.1016/j.jallcom.2015.10.203

X. Zhong, J. Wang, S. Zhang, G. Yang and Y. Wang, Y. Ten-fold coordinated polymorph and metallization of TiO2 under high pressure. RSC Adv, Vol 5, pp. 54253-54257, 2015. https://doi.org/10.1039/C5RA07245J

X. Zhong, L. Yang, X. Qu, Y. Wang, J. Yang and Y. Ma. Crystal Structures and Electronic Properties of Oxygen-rich Titanium Oxides at High Pressure. Inorg. Chem, Vol 57, pp. 3254–3260, 2018. https://doi.org/10.1021/acs.inorgchem.7b03263

Bruker (2006). APEX2, SAINT, Bruker AXS Inc., Madison, Wisconsin, USA 2006.

G. M. Sheldrick. Program for the refinement of crystal structures. SADABS, Bruker AXS Inc., Madison, Wisconsin, USA 2002. http://shelx.uni-ac.gwdg.de/shelx/

L. Palatinus and G. Chapuis. SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, Vol 40, pp. 786-790, 2007. https://doi.org/10.1107/S0021889807029238

V. Petříček, M. Dušék and L. Palatinus. The crystallographic computing system. JANA, 2006 Institute of Physics, Praha, Czech Republic, 2006. www-xray.fzu.cz

A. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson and M. C. Payne. First principles methods using CASTEP. Z Krist Cryst Mater, Vol 220, pp. 22567-22570, 2000. https://doi.org/10.1542/zkri.220.5.567.65075

Materials Studio CASTEP Manual © Accelrys, 2010. http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html.

B. Hammer, L. B. Hansen and J. K.. Nørskov. improved adsorption energetic within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev, Vol B59, pp. 7413-7421, 1999. https://doi.org/10.1103/PhysRevB.59.7413

J. P. Perdew, K. Burke and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett, Vol 77, pp. 3865-3868, 1996. https://doi.org/10.1103/PhysRevLett.77.3865

C. E. Rise and W. R. Robinson. Structural changes in the solid solution (Ti1−xVx)2O3 as x varies from zero to one. J. Solid State Chem, Vol 21, pp. 145-154, 1977. https://doi.org/10.1016/0022-4596(77)90154-2

C. E. Rise and W. R. Robinson. Structural changes resulting from doping Ti2O3 with Sc2O3 or Al2O3. J. Solid State Chem, Vol 15, pp. 155-160, 1977. https://doi.org/10.1016/0022-4596(77)90155-4

W. R. Robinson. The crystal structures of Ti2O3, a semiconductor, and (Ti0.900V0.100)2O3, a semimetal. J. Solid State Chem, Vol 9, pp. 255-260, 1974. https://doi.org/10.1016/0022-4596(74)90082-6

L. M. Su, X. Fan, G. M. Cai and Z. P. Jin, Z.P. A peculiar layered 12-fold cationic coordination compound LiInTi2O6: phase relations, crystal structure and color-tunable photoluminescence. RSC Adv, Vol 7, pp. 22156-22169, 2017. https://doi.org/10.1039/c7ra01891f

(a) I. D. Brown and D. Altermatt. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Cryst, Vol B41, pp. 244-247, 1985. https://doi.org/10.1107/S0108768185002063

Y. Le Page and P. Strobel. Structural chemistry of Magnéli phases TinO2n−1 (4 ≤ n ≤ 9). III. Valence ordering of titanium in Ti6O11 at 130 K. J. Solid State Chem, Vol 47, pp. 6-15, 1983. https://doi.org/10.1016/0022-4596(83)90034-8

L. F. Mattheiss. Electronic structure of rhombohedral Ti2O3. J. Phys.: Condens. Matter, Vol 8, pp. 5987-5995, 1996. https://doi.org/10.1088/0953-8984/8/33/007

H. J. Zeiger. Unified model of the insulator-metal transition in Ti2O3 and the high-temperature transitions in V2O3. Phys. Rev, Vol B11, pp. 5132-5144, 1975. https://doi.org/10.1103/PhysRevB.11.5132

Z. Hu and H. Metiu. Choice of U for DFT+U Calculations for Titanium Oxides. J. Phys. Chem, C, Vol 115, pp. 5841-5845, 2011. https://doi.org/10.1021/jp111350u

S. H. Shin, G. V. Chandrashekhar, R. E. Loehman and J. M.Honig. Thermoelectric Effects in Pure and V-Doped Ti2O3 Single Crystals. Phys. Rev, Vol B8, pp. 1364-1372, 1973. https://doi.org/10.1103/PhysRevB.8.1364

Downloads

Additional Files

Published

2021-04-01

Issue

Section

Research Article

How to Cite

[1]
S. . Merazka, L. . Hammoudi, M. Kars, M. . Sidoumou, and T. . Roisnel, “Structure and New Substructure of α-Ti2O3: X-ray Diffraction and Theoretical Study”, J. Mod. Mater., vol. 8, no. 1, pp. 3-11, Apr. 2021.