Effect of Concentration Variation on Optical and Structural Properties of TiO2 Thin Films

Authors

  • Sabastine Chinedu Ezike Department of Physics, Modibbo Adama University of Technology, Yola, Adamawa State

DOI:

https://doi.org/10.21467/jmm.7.1.1-6

Abstract

Concentrations in weight percent (5- 25 wt %) of TiO2 films used to optimize the film formation. The TiO2 films on glass substrates successfully obtained by spin-coating process using TiO2 nanopowder as precursor. Ultraviolet-Visible (UV-Vis), Scanning Electron Microscopy (SEM) equipped with Electron Diffraction X-ray (EDX) and X-ray Diffractometer (XRD) techniques used to characterize the films. The result of electron transport material (TiO2) showed that film prepared from 15 wt % of TiO2 solution and annealed at 450  has highest transmittance at visible light region with indirect optical band gap of 3.24 eV which corresponds to wavelength of 382 nm whereas 20 wt % has indirect band gap of 2.99 nm equivalent to 414.7 nm . The chemical analysis from Electron Diffraction Spectroscopy (EDS) of the material shows titanium and oxygen present at L and K-shells, respectively. The sample crystallized with preferred orientation at (101) from XRD analysis.

Keywords:

TiO2, Thin Film, Electron Transport Material, Spin coating, concentration variation

Downloads

Download data is not yet available.

References

<p>[1]&nbsp;&nbsp;&nbsp;&nbsp; X. Kang, S. Liu, Z. Dai, Y. He, X. Song, Z. Tan, “Titanium Dioxide: From Engineering to Applications,” <em>Catalyst</em>, vol. 9, pp. 191, Feb. 2019.</p>
<p>&nbsp;[2]&nbsp;&nbsp;&nbsp; M. H. Farooq, I. Aslam, A. Shuaib, H. S. Anam, M. Rizwan, Q. Kanwal, “Band Gap Engineering For Improved Photocatalytic Performance Of Cus/Tio2 Composites Under Solar Light Irradiation,” <em>Bull. Chem. Soc. Ethiop</em>, vol. 33, no. 3, pp. 561-571, Jul. 2019.</p>
<p>[3]&nbsp;&nbsp;&nbsp; Y. Wang,&nbsp;C. Sun, X. Zhao, B. Cui, Z. Zeng,&nbsp;A. Wang,&nbsp;G. Liu,&nbsp;H. Cui, “The Application of Nano-TiO<sub>2</sub>&nbsp;Photo Semiconductors in Agriculture” <em>Nanoscale Res Lett </em>,vol. 11, pp.529, 2016.</p>
<p>[4]&nbsp;&nbsp;&nbsp;&nbsp; S. Higashimoto, “Titanium-Dioxide-Based Visible-Light-Sensitive Photocatalysis: Mechanistic Insight and Applications,”<em>catalyst</em>, vol. 9,&nbsp; pp. 201, Feb. 2019.</p>
<p>[5]&nbsp;&nbsp;&nbsp;&nbsp; K. Sharma, V. Sharma, S. S. Sharma, “Dye-Sensitized Solar Cells: Fundamentals and Current Status,” <em>Nanoscale research letters,</em>&nbsp;vol. 13, no.1, pp. 381, Nov. 2018.</p>
<p>[6]&nbsp;&nbsp;&nbsp;&nbsp; Y. Nam,&nbsp;J. H. Lim,&nbsp;&nbsp;K. C. Ko,&nbsp;&nbsp;J. Y. Lee, “Photocatalytic activity of TiO<sub>2</sub>&nbsp;nanoparticles: a theoretical aspect,” <em>J. Mater. Chem. A.</em>, vol. 7, issue 23, pp. 13833-13859, May 2019.</p>
<p>[7]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A. Jilani, M. S. Abdel-wahab, A. H. Hammad, “Advance Deposition Technique for Thin Film and Coating”, Modern Technologies for Creating the Thin-film Systems and Coatings, N. N. Nikitenkov, <em>Intechopen, </em>Mar. 2017.</p>
<p>[8]&nbsp;&nbsp;&nbsp;&nbsp; S. C. Ezike, G. M. Z. Kana, A. O. Aina, “Progress and Prospect on Stability of Perovskite Photovoltaics,” <em>J. Mod. Mater., </em>vol. 4, no.1, pp. 16-30, May 2017.</p>
<p>[9]&nbsp;&nbsp;&nbsp;&nbsp; C. Chen,&nbsp;Y. Cheng,&nbsp;Q. Dai,&nbsp;H. Song, “Radio Frequency Magnetron Sputtering Deposition of TiO<sub>2</sub>&nbsp;Thin Films and Their Perovskite Solar Cell Applications” <em>Scientific Report</em>, vol. 5, no.&nbsp;17684, pp. 1-12, Dec. 2016.</p>
<p>[10]&nbsp;&nbsp; A. Nishimura, X. Zhao,T. Hayakawa,&nbsp;N. Ishida,&nbsp;M. Hirota, E. Hu, “Impact of Overlapping Fe/TiO<sub>2</sub>&nbsp;Prepared by Sol-Gel and Dip-Coating Process on CO<sub>2</sub>&nbsp;Reduction,” <em>Int. J. Photoenergy</em>, Vol.&nbsp;2016, Article ID&nbsp;2392581, Jun. 2016.</p>
<p>[11]&nbsp;&nbsp; S. C. Ezike, A. B. Alabi, A. N. Ossai, A. O. Aina, “Effect of tertiary butylpyridine in stability of methylammonium lead iodide perovskite thin films,” <em>Bull. Mater. Sci.,</em> vol. 43, issue 1, pp. 40, Jan. 2020.</p>
<p>[12]&nbsp;&nbsp; S. N. Sadikin, M. Y. A. Rahman, A. A. Umar, M. M. Salleh, “Effect of Spin-Coating Cycle on the Properties of TiO<sub>2 </sub>Thin Film and Performance of DSSC,” <em>Int. J. Electrochem. Sci</em>., vol. 12, pp. 5529 – 5538, May 2017.</p>
<p>[13]&nbsp;&nbsp; I. Sta, M. Jlassi, M. Hajji, M.F. Boujmil, R. Jerbi, M. Kandyla, M. Kompitsas, H. Ezzaouia, “Structural and Optical Properties of TiO<sub>2</sub> Thin Films Prepared by spin Coating,” <em>J. Sol-Gel Sci. Tech</em>., vol. 72, pp. 421-427, Jul. 2014.</p>
<p>[14]&nbsp;&nbsp; A.&nbsp;Jain, D.&nbsp;Vaya, “Photocatalytic Activity of TiO<sub>2</sub>&nbsp;Nanomaterial,” <em>J. Chil. Chem. Soc.</em>, vol. 62,&nbsp;no.4, 2017.</p>
<p>[15]&nbsp;&nbsp; V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, “Modified TiO<sub>2</sub>&nbsp;based photocatalysts for improved air and health quality,” <em>Journal of Materiomics</em>, vol. 3, Issue 1,&nbsp;pp. 3-16, March 2017.</p>
<p>[16]&nbsp;&nbsp; J. Spiridonova, A. Katerski, M. Danilson, M. Krichevskaya, M. Krunks, I. O. Acik, “Effect of the Titanium Isopropoxide: Acetylacetone Molar Ratio on the Photocatalytic Activity of TiO<sub>2</sub> Thin Films” <em>Molecules</em>, vol. 24, pp. 4326, Nov. 2019.</p>
<p>[17]&nbsp;&nbsp; S. K. Pathak, A. Abate, T. Leijtens,&nbsp; D. J. Hollman, J. Teuscher,&nbsp; L. Pazos, P. Docampo, U. Steiner, H. J. Snaith,&nbsp; “Towards Long-Term Photostability of Solid-State Dye Sensitized Solar Cells” <em>Adv. Energy Mat.</em> vol. 4, 2014.</p>
<p>[18] &nbsp;&nbsp; A. Fakharuddin, F. D. Giacomo, A. L. Palma, F. Matteocci, I. Ahmed, S. Razza, A. D’Epifanio, S. Licoccia, J. Ismail, A. D. Carlo, T. M. Brown, R. Jose, “Vertical TiO<sub>2</sub>&nbsp;Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules,” ACS nano, vol. 9, issue 8, pp. 8420-8429, Aug. 2015.</p>
<p>[19]&nbsp;&nbsp;&nbsp;&nbsp; K. Fischer, A. Gawel, D. Rosen, M. Krause, A. A. Latif, J. Griebel, A. Prager, A. Schulze, “Low-Temperature Synthesis of Anatase/Rutile/Brookite TiO2 Nanoparticles on a Polymer Membrane for Photocatalysis,” <em>Catalyst,</em> vol. 7, pp. 209, Jul. 2017.</p>
<p>[20]&nbsp;&nbsp;&nbsp;&nbsp; B. N. Cardoso, E. C. Kohlrausch,&nbsp;M. T. Laranjo, E. V. Benvenutti, N. M. Balzaretti,&nbsp;L. T. Arenas,&nbsp;M. J. L. Santos,&nbsp;T. M. H. Costa, “Tuning Anatase-Rutile Phase Transition Temperature: TiO<sub>2</sub>/SiO<sub>2</sub>&nbsp;Nanoparticles Applied in Dye-Sensitized Solar Cells” <em>Int. J. Photoenergy</em>, vol. 2019 , Article ID&nbsp;7183978, Mar. 2019.</p>
<p>[21]&nbsp;&nbsp; T. S. Senthil, N. Muthukumarasamy, S.&nbsp; Agilan, M. Thambidurai, R. Balasundaraprabhu, “Preparation and characterization of nanocrystalline TiO2 thin films,” <em>Mat. Sci. and Eng. B.</em> vol. 174, issue 1-3, pp. 102-104, Oct. 2010.</p>
<p>[22]&nbsp;&nbsp; A. Elfanaoui,&nbsp;E. Elhamri,&nbsp;L. Boulkaddat,&nbsp;A. Ihlal,&nbsp;K. Bouabid,&nbsp;L. Laanab,&nbsp;A. Taleb,&nbsp;X. Portier, “Optical and structural properties of TiO2 thin films prepared by sol–gel spin coating,” <em>Int. J. Hydrogen Energy</em>,&nbsp; vol.36, issue 6, pp. 4130-4133, 2011.</p>
<p>[23]&nbsp;&nbsp; V. Zharvan, R. Daniyati, A. S. N. Ichzan, G. Yudoyono, Darminto, “Effect of calcination temperature on the photocatalytic activity of TiO<sub>2</sub>&nbsp;powders prepared by co-precipitation of TiCl<sub>3</sub>,” <em>Proceedings of 14<sup>th</sup> AIP international conference on theoretical and applied Physics</em>, vol. 1725, issue 1, pp 020099, April 2016.</p>
<p>[24]&nbsp;&nbsp; S. W. Balogun, S. C. Ezike, Y. K. Sanusi, A. O. Aina “Effects of thermal annealing on optical properties of poly (3-Hexyithiophene):[6, 6]-Phenyl C6o-butyric acid methyl ester blend thin film,”&nbsp; <em>Journal of Photonic Materials and Technology</em>, vol.3, issue 2, pp. 14-19, Nov. 2017.</p>
<p>[25]&nbsp;&nbsp; Weight Percent. Available http://dl.clackamas.edu/ch105-04/weight.htm (accessed on 27 Jan. 2020)</p>
<p>[26]&nbsp;&nbsp; F. Huang, A. Yan, H. Zhao, “Influence of doping on photocatalytic properties of TiO<sub>2</sub> Photocatalyst,” <em>Intechopen, vol.</em> Aug. 2016.</p>
<p>[27]&nbsp;&nbsp; S.C. Ezike, D. N. Okoli, “Deposition Temperature Effects On CuAlSe<sub>2 </sub>Compound Thin Films Prepared By Chemical Bath Deposition Technique” <em>IOSR Journal of Applied Physics</em>, vol. 1, issue 3, pp. 23-26, 2012.</p>
<p>[28]&nbsp;&nbsp; A. K. Tripathi, M. K. Singh, M. C. Mathpal, S. K. Mishra, A. Agarwal, “Study of structural transformation in TiO<sub>2</sub>&nbsp;nanoparticles and its optical properties,” <em>Journal of Alloys and Compounds</em>, vol. 549,&nbsp;pp. 114-1205, Feb. 2013.</p>
<p>[29]&nbsp; &nbsp;N. Rani1, S. Chahal1, A. S. Chauhan, P. Kumar, R. Shukla, S. K. Singh, “X-ray Analysis of MgO Nanoparticles by Modified Scherer’s Williamson-Hall and Size-Strain Method,” <em>Materials Today: Proceedings</em>, vol. 12, pp. 543–548, 2019.</p>

Downloads

Published

2020-03-05

Issue

Section

Research Article

How to Cite

[1]
S. C. Ezike, “Effect of Concentration Variation on Optical and Structural Properties of TiO2 Thin Films”, J. Mod. Mater., vol. 7, no. 1, pp. 1-6, Mar. 2020.