Progress and Prospect on Stability of Perovskite Photovoltaics

  • Chinedu Sabastine Ezike Kwara State University, Malete, Nigeria
  • G.M. Zebaze Kana Kwara State University Malete, Nigeria
  • A. O. Aina Kwara State University Malete, Nigeria

Abstract

Solar energy has the potential to solve world energy problem as it is pollution- free. It could be enhanced using perovskite material as an absorber in perovskite solar cells. The history and what this material is made up of are emphasized. Different methods of fabrication, improving the power conversion efficiency (PCE) and factors influencing degradation of perovskite-based solar are stated. Because of the fact that this material based solar cells are not yet developed, its stability was reviewed to bring different technology employed in tackling the stability aiming for a better understanding of the material and the devices and facilitates the commercialization of perovskite solar cell.

Keywords: Perovskite, Degradation, renewable energy, Solar cell, Stability

Downloads

Download data is not yet available.

Author Biographies

Chinedu Sabastine Ezike, Kwara State University, Malete, Nigeria

Ph.D. Student (Materials Science/2nd year), Department of Physics and Materials Science

G.M. Zebaze Kana, Kwara State University Malete, Nigeria

Associate Professor, Department of Materials Science and Engineering

A. O. Aina, Kwara State University Malete, Nigeria

Professor, Department of Physics & Materials Science

References

[1]        Liang, T.S., Zainal, Z., Tee, T.W., Hamadneh, I. Potentiostatic deposition of copper indium disulfide thin films: effect of cathodic potentials on the optical and photoelectrochemical properties, The Malaysia Journal of Analytical Science, 12(3), 600 – 608, 2008. GS


[2]       Weiss, M.,Horn, J.,Ritcher, C.,Schlettwein, D. Preparation and characterization of methylammonium tin iodide layers as photovoltaic absorbers, Phys. Status Solidi A, 213(4), 975 – 981, 2015.Article


[3]       Birkmire, R., Eser, E. Polycrystalline thin film solar cells: present status and future potential, Ann. Rev. Mater. Sci. 27, 625 – 653, 1997. Article


[4]        Ameri, T., Dennier, G., Lungenschmeied, C., Brabec, C. J. Organic tandem solar cells: A review, Energ. Environ. Sci. 2, 347 – 363, 2009. Article


[5]        Kumar, A., Hong, Z.R., Sista, S., Yang, Y. The critical role of processing and morphology in determining degradation rates in polymer solar cells, Adv. Energy Mater. Vol 1, no 1,pp 124 – 131. 2011. Article


[6]        Hook, M., Tank, X. Depletion of fossil fuels and anthropogenic climate change -A review, Energy Policy, 52, 797–809, 2013. Article


[7]        Henderson, D. O., Mu, R., Ueda, A., Wu, M. H., et al Optical and structural characterization of copper indium disulfide thin films. Materials and Design 22:585- 589. Article


[8]       Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A. A., Sadhanala, A., Eperon, G. E., Pathak, S. K., Johnston, M. B., Petrozza, A., Herz, L. M., Snaith, H. J. Lead - free organic – inorganic tin halide perovskite for photovoltaic applications, Energy and  Environ. Sci. 7(9), 3061 – 3068, 2014. Article


[9]       Malinkiewicz, O., Yella, A., Lee, Y.H., Espallarga, M., Graetzel, M., Nazeeruddin, M.K., Bolink, H. J. Perovskite solar cells employing organic charge- transport layers, Nature Photonics, 8, 128 – 132, 2013. Article


[10]     Lewis, N. S., Nocera, D. G.  Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA, 103 (43) 15729-15735, 2006. Article


[11]     Chung, I., Lee, B., He, J., Chang, R.P.H., Kanatzidis, M.G. All-solid-state dye-sensitized solar cells with high efficiency, .Nature, 485, 486 – 489. 2012. Article


[12]     Huynh, W.U., Dittmer, J.J., Alivisatos, A. P. Hybrid nanorod – polymer solar cells, Science, 295, 2425 – 2427, 2002. Article


[13]     Im, J. – H., Lee, C. – R., Lee, J. – W., Park, S. – W., Park, N. – G. 6.5% efficient perovskite quantum – dot sensitized solar cell, Nanoscale, 3 (10), 4088 – 4093, 2011. Article


[14]      Muhammad , M. A.,  Sahamir, S.R.,  Datta, R. S.,  Long, B. D.,  Sabri, M.F., and  Said, S.M. “A Review on the Fabrication of Polymer-Based Thermoelectric Materials and Fabrication Methods” The Scientific World Journal, vol 2013, 713640, pp 17, 2013. Article


[15]     Xiong, J.,Yang, B.C., Zhou, C.H., Yang, J.L., Duan, H.C., Huang, W.I., Zhang, X., Xia, X.D., Zhang, L., Huang, H., Gao, Y.L. Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer, Org. Electron 15, 835 – 843, 2014. Article


[16]     Yip, H.L., Jen, A.K.Y. Recent advances in solution – processed interfacial materials for efficient and stable polymer solar cells, Energ. Environ. Sci. 5, 5994 – 6011, 2012 Article


[17]     Shang, H.X., Fan, H.J., Liu, Y., Hu, W.P., Li, Y.F., Zhan, X.W. A solution – processable star – shaped molecule for high – performance organic solar cells, Adv. Mater. 23, 1554 – 1557, 2011. Article


[18]     Wu, J.B., Becerril, H.A., Bao, Z.N., Liu, Z.F., Chen, Y.S.,Peumans, P. Organic solar cells with solution – processed grapheme transparent electrodes, Appl. Phys. Lett. 92, 2008. Article


[19]     Zhou, H. P., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S., Hong, Z.R., You, J. B., liu, Y. S., Yang, Y. Photovoltaics: interface engineering of highly efficient perovskite solar cells, Science, 345, 542 – 546, 2014. Article


[20]     Nie, W.Y., Tsai, H.H., Asadpour, R., Blancon, J.C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.L., Mohite, A.D. High efficiency solution – processed perovskite solar cells with millimeter – scale grains, Science 347, 522 – 525, 2015. Article


[21]     Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I. High – performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348, 1234 – 1237, 2015. Article


[22]      Yang, S., Fu, W., Zhang, Z., Chen, H., Li, C-Z. Recent Advances in Perovskite Solar Cells: Efficiency, Stability and Lead-free Perovskite , J. Mat. Chem. A 2017. Article


[23]     O’Regan, B., Grätzel, M. A low-cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films, Nature, 353(6346): 737 – 740, 1991. Article


[24]     Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Petterson, H. Dye-sensitized solar cells. Chemical Reviews, 7(6), 6595 – 6663, 2010. Article


[25]     Mathew, S., Yella, S.A., Gao, P., Humphrey-Baker, R., Curchod, B.F.E., Ashari – Astani, N., tavernelli, I., Rothlisberger, U., Nazeerudin, M. K., and Grätzel, M. Dye-sensitized solar cells with 13 % efficient achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry, 6 (3): 242 – 247, Nat Chem.  6(3): 242-247, 2014. Article


[26]     Asghar, M.I., Miettunen, K., Halme, J., Vahermaa, P., Toivola, M., Aitola, K., and Lund, P. Review of stability for advanced dye solar cells, Energy and Environmental Science, 3(4), 418 – 426, 2010. Article


[27]     Halme, J., Vaherma, P., Miettunen, K., Lund, P.. Device Physics of Dye Solar Cells, Adv. Mater. 22 (35), E210 – E234, 2010.Article


[28]     Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, and Grätzel, M. Solid – state dye – sensitized mesoporous TiO2 solar cells with high photon-to –electron conversion efficiencies, Nature, 395 (6702), 583 – 585, 1998. Article


[29]     Boix, P. P., Nonomura, K., Mathews, N., Mhaisalkar, S. G. Current progress and future perspectives for organic/inorganic perovskite solar cells, Mater. Today, 17(1), 16 -23. 2014. Article


[30]     Petrović, M.,Chellappan, V., Ramakrishna, S. Perovskites: solar cells & engineering applications – materials and device development, Solar Energy, 122, 678 – 699, 2015. Article


[31]     Stranks, S.D., Nayak, P.K., Zhang, W., Stergiopoulos, T., Snaith, H.J. Formation of thin films of organic – inorganic perovskite for high – efficiency solar cells, Angew. Chem. Int. Ed., 54 (11), 3240 – 3248, 2015. Article


[32]      Snaith, H. J. Perovskites: the emergence of a new era for low- cost high efficiency solar cells, J. Phys. Chem. Lett., 4 (21), 3623 – 3630, 2013. Article


[33]      Hao, F., Stoumpos, C. C.,Cao, D. H., Chang, R. P. H., Kanatzidis, M. G. "Lead – free solid – state organic – inorganic halide perovskite solar cells" Nat. Photon, 8, 489-494, 2014. Article 


[34]      Stamplecoskie, K.G., Manser, J.S., Kamat, P.V. Dual nature of the excited stated in organic – inorganic lead halide perovskite, Energy Environ. Sci. 2014. Article


[35]      Stranks, S.D., Nayak, P.K., Zhang, W., Stergiopoulos, T., Snaith, H.J. Formation of thin films of organic – inorganic perovskite for high – efficiency solar cells, Angew. Chem. Int. Ed., vol 54, no 11, pp. 3240-3248, 2015. Article


[36]      Kojima, A. Teshima, K., Shirai, Y., Miyasaka, T. Organometal halide perovskites as  visible – light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(17) 6050 - 6051. 2009. Article


[37]      Lee, M. M., Teuscher, J., Miyaska, T., Murakami, T.N., Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, vol. 338, (6107), 643 – 647, 2012. Article


[38]      Körbel, S. M., Marques, M. and Botti, S. Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations, J. Mater. Chem. C, vol 4, pp. 3157-3167, 2016. Article


[39]      Mitzi, D. B., Wang, S., Field, C. A., Chess, C. A, Gluoy, M. A. Conducting layered organic – inorganic halides containing <110>- oriented perovskite sheets, Scence, 267(5203), 1473 – 1476, 1995. Article


[40]      Li, C., Lu, X., Ding, W., Feng, L., Goa, Y., Guo, Z. Formability of ABX3 (X =F, Cl, Br, I) halide perovskites.  Acta  Crystallographica B, 64, 702 – 707, 2008. Article


[41]      Cohen, B. N., Labarca, C., Davidson, N., Lester, H. A. Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations, Journal of general Physiology, 100(3), pp. 373 – 400, 1992. Article PubMed


[42]      Mckinnon, N. K., Reeves, D.C., Akabas, M.H. 5 – HT3 receptor ion size selectivity is a property of the transmenbrane channel, not the cytoplasmic vestibule portals, Journal of General physiology, 138 (4), 453–466, 2011. Article


[43]      Im, J – H., Chung, J., Kim, S.-J., Park, N. – G. Synthesis structure, and photovoltaic property of a nanocrystalline 2H perovskite- type novel sensitizer (CH3CH2NH3)PbI3 , Nanoscale Research Letters, 7, 353, 2012. Article


[44]      Sanchez, R.S., Gonzalez – Pedro, V., Lee, J.-W. et al  Slow dynamic processes in lead halide perovskite solar cells: characteristic times and hysteresis, Journal of Physical Chemistry Letters, 5 (13), 2357 – 2363, 2014. Article


[45]      Eperon, G.E., Stranks, S.D., Melelaou, C., Johnson, M., Herz, L.M., Snaith, H.J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci. 7, 982 – 988, 2014. Article


[46]      Lv, S.;  Pang,S.;   Zhou, Y.;  Padture, N. P.;   Hu,H.;  Wang , L.;   Zhou, X.;   Zhu, H.;   Zhang, L.;   Huang, C.;   Cui , G.One – step, solution – processed formamidinium lead trihalide (FAPbI3-xClx) for mescopic perovskite – polymer solar cells, Physical Chemistry Chemical Physics, 16(36), 19206 – 19211, 2014. Article


[47]      Pang, S., Hu, H., Zhang, J. et al. NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells, Chemistry of Materials, 26 (3), 1485 – 1491, 2014. Article


[48]     Kim, H.-S.; Lee, C.-R.; Im,  J.-H.; Lee, K.-B.; Moehl, T.; Marchioro,  A.; Moon, S.-J.; Humphry-Baker,  R.; Yum, J.-H.; Moser,  J. E. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep., 2, 591, 2012. Article


[49]      Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, I. Charge-Carrier Dynamics   in  Vapour-Deposited Films of   the Organolead Halide Perovskite CH3NH3PbI3−xClx,   Energy and Environ. Sci., 7, 2269 – 2275, 2014. Article


[50]     Heo, J.H.; Song, D.H.; Patil, B.R.; Im, S.H.       Recent Progress of Innovative Perovskite Hybrid Solar Cells.Isr. J. Chem., 55 (9), 966–977, 2015. Article


[51]      Liu, M., Johnston, M.B., Snaith, H.J. Efficient Planar heterojunction  perovskite Solar Cells by vapour deposition, Nature, 501, 395−398,2013. Article


[52]      Ball, J. M., Lee, M. M., Hey, A., Snaith, H. J. Low-temperature processed meso- superstructured to thin-film solar cells, Energy Environ. Sci., 6, 1739–1743, 2013. Article


[53]      Burlakov, V. M., Eperon, G. E., Snaith, H. J., Chapman, S. J., Goriely, A. Controlling coverage of solution cast materials with unfavourable surface interactions Appl. Phys. Lett., 104, 091602, 2014. Article


[54]      Stranks, S. D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L. M., Petrozza, A., Snaith, H. J. Electron – hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342(6156), 341 –344, 2013. Article


[55]      Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 6240,1234–1237, 2015. Article


[56]      Liang, K., Mitzi, D. B., Prikas, M. T. Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique, Chem. Mater., 10(1), 403 – 411, 1998. Article


[57]      Elumalai, N. K., Mahmud, Md A., Wang, D. and Uddin, A. Perovskite Solar Cells: Progress and Advancements, Energies, 9, 861, 2016. Article


[58]      Burschka, J.,Pellet, N., Moon S.J., Humphrey-Baker, R., Wang, P., Zakeeruddin, S.M., and Grätzel, M. Sequential deposition as a route to high- performance perovskite – sensitized solar cells. Nature, 499 (7458): 316 – 319, 2013. Article


[59]      Huang, F., Dkhissi, Y.,  Huang, W., Xiao, M., Benesperi, et al, “Gas – assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells” Nano energy, vol 10. pp 10-18, 2014. Article


[60]      Li, W.; Fan, J.; Li, J.; Mai, Y.; Wang, L. Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. J. Am. Chem. Soc., 137 (32), 10399–10405, 2015. Article


[61]     Bai, S.; Wu, Z.; Wu, X.; Jin, Y.; Zhao, N.; Chen, Z.; Mei, Q.; Wang, X.; Ye, Z.; Song, T.; Liu, R.; et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 7, 1749 –1758, 2014.Article


[62]      Abbas, H., Kottokkaran, R., Balaji, G., Samie, M., Zhang, L. and Dalal, V. L. High efficient sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped  P3HT as p-type heterojunction layer, APL Mat. 3, 016105, 2015. Article


[63]     Yao, K., Wang, X., Xu, Y-x., Li, F. A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-general layered perovskite, Nano energy, vol 18, pp. 165-175, 2015. Article


[64]      Brittman, S., Adhyaksa, G. W.P. and Garnett, E.C. The expanding world of hybrid perovskites: materials properties and emerging applications, MRS Communication, 5 (1), 7-26, 2015. Article


[65]     Frost, J. M., Butler, K.T., Brivio, F., Hendon, C.H., Schilfgaarde, M.V.,Walsh, A. Atomistic origins of high – performance in hybrid halide perovskite solar cells, Nano Lett. 14 (5), pp 2584-2590, 2014. Article


[66]      Kim, H. – S., Lee, J. – W., Yantara, N., Boix, P. P., Kulkarni, S. A., Mhaisakar, S., Gratzel, M., Park, N. – G. High efficiency solid – state sensitized solar cell – based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizers, Nano Lett., 13 (6), pp 2412-2417, 2013. Article


[67]      Ko, H. – S., Lee, J. – W., Park, N. – G. 15.76% efficiency perovskite solar cell prepared under high relative humidity: Importance of PbI2 morphology in two step deposition of CH3NH3PbI3, J. Mater. Chem. A., vol 3, pp. 8808-8815, 2015. Article


[68]      Li, B., Li, Y., Zheng, C., Gao, D., Huang, W. Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC adv., 6, 38079 – 38091, 2016. Article


[69]      Berhe, T. A., Su, W-N., Chen, C-H., Pan, C-J., Cheng, J-H., Chen, H-M., Tsai, M-C., Chen, L-Y., Amare Aregahegn Dubale, A. A and Hwang, B-J, Organometal halide perovskite solar cells: degradation and stability, Energy Environ. Sci., 9, 323-356, 2016. Article


[70]     You, J. B.,  Hong, Z. R., Song, T. – B., Meng, L., Liu et al. “Moisture assisted perovskite film growth for high performance solar cells”. Appl. Phys. Lett., 105, 183902, 2014. Article


[71]      Bass, K. K., Mcanally, R. E., Zhou, S., Djurovich, P.I., Thompson, M. E., Melot, B.C. Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites, Chem. Commun., 50, 15819 – 15822, 2014. Article


[72]      Wu, C. – G., Chiang, C. – H., Tseng, Z. – L., Nazeeruddin, M. K., Hagfeldt, A., Gratzel, M. High efficiency stable inverted perovskite solar cells without current hysteresis, Energy and Environ. Sci., 8, 2725 – 2733, 2015. Article


[73]      Niu, G. D., Guo, X. D., Wang, L.D. Review of recent progress in chemical stability of perovskite solar cells, J. Mater. Chem. A., 3, 8970 – 8980, 2015. Article


[74]      Niu, G. D., Li, W. Z., Meng, F. Q., Wang, L. D., Dong,  H. P., Qiu, Y.  Study on the stability of CH3NH3PbI3 films and the effect of post modification by aluminium oxide in all solid – state hybrid solar cells, J. Mater. Chem. A, 2, 705 – 710, 2014. Article


[75]      Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I. High – performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348(6240), 1234 – 1237, 2015. Article


[76]     Christians, J. A., Miranda Herera, P. A., Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3  perovskite upon controlled exposure to humidified air, J. Am. Chem. Soc., 137, 1530 – 1538, 2015. Article


[77]      Mosconi, E., Azpiroz, J. M., Angelis, F. De.  Ab initio molecular dynamic simulation of methylammonium lead iodide perovskite degradation by water, Chem. Mater., 27 (13), 4885 – 4892, 2015. Article


[78]      Huan, Y., Meyer, S., Dkhissi, Y., Weber, K., Pringle, J.M., Bach, U., Spiccia, L., Cheng, Y. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity, J.Mater. Chem. A, 3, 8139-8147, 2015. Article


[79]      Aristidou, N., Sanchez – Molina, I., Chotchuangchutchaval, T., Brown, M., Martinez, L., Rath, T., Haque, S. A. The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angew. Chem. Int. Ed., 54, 8208 – 8212, 2015. Article


[80]      Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., Snaith, H. J. Overcoming ultraviolet light instability of sensitized TiO2 with meso – superstructured organometal tri – halide perovskite solar cells, Nat. Commun., 4, 2885, 2013. Article


[81]      Ito, S., Tanaka, S., Manabe, K., Nishino, H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells, J. Phys. Chem. C, 118(30), 16995 – 17000,2014. Article


[82]      Conings, B., Dijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., Ethirajan, A., Verbeeck, J., Manca, J., Mosconi, E., Angelis, F.D., Boyen, H. – G. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite, Adv. Energy Mater., 5(15), 1500477, 2015. Article


[83]      Philippe, B.; Park, B.-W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E.M.J.; Rensmo, H. Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation. Chem. Mater. 27(5), 1720–1731, 2015. Article


[84]     Misra, R. K.,Aharon, S., Li, B., Mogilyansky, D., Visolyfisher, I., Etgar, L., Katz, E. A. “Temperature - and component - dependent degradation of perovskite photovoltaic materials under concentrated sunlight”J. Phys. Chem. Lett., 6 (3), 326 – 330, 2015. Article


[85]      Leong, W. L., Ooi, Z.E., Sabba, D., Yi, C., Zakeeruddin, S.M., Graetzel, M., Gordon, J. M, Katz, E. A., Mathews, N. Identifying Fundamental Limitations in Halide Perovskite Solar Cells., Adv. Mater., 28 (12), 2439–2445, 2016. Article


[86]      Zhang, M., Lyu, M. Q., Yu, H., Yun, J. H., Wang, Q., Wang, L. Z. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a holew transporter, Chem. – Eur. J., 21(1), 434 – 439, 2015. Article


[87]      Jiang, Q. l., Rebollar, D.,Gong, J., Piacentino, E. L., Zheng, C., Xu, T. Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films, Angew. Chem. Int. Ed., 54(26), 7617 – 7620, 2015. Article


[88]      Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., Snaith, H. J. Morpholgical control for high performance, solution – processed planar heterojunction perovskite solar cells, Adv. Funct. Mater., 24(1), 151 – 157, 2014. Article


[89]      Lyu, M., Yun, J-H., Cai, M., Jiao, Y., Bernhardt, P. V., Zhang, M., Wang, Q., Du, A., Wang, H., Liu, G., and Wang, L. Organic–inorganic bismuth (III)-based material: A leadfree, air-stable and solution-processable light-absorber beyond organolead perovskites, Nano Research, 9, 692, 2016. Article


[90]     Chen, Q., Marco, N. De, Yang, Y., Song, T. – B., Chen, C. – C., Zhao, H. X., Hong, Z. R., Zhou, H. P., Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, 10 (3), 355 – 396, 2015. Article


[91]      Kim, B.J., Kim, D. H, Lee, Y. et al. “Highly efficient and blending durable perovskite solar cells: towards a wearable power source”Energy & Environmental Science, 8(3), 916 – 921, 2015. Article


[92]     Qian, M., Li, M., Shi, X. B., Ma, H.,Wang, Z. K., Liao, L.S. Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode modification, J. Mater. Chem. A, 3, 13533 – 13539, 2015. Article


[93]     Zheng, H., Zhu, X., Liang, Y., Guo, X. Interfacial layer engineering for performance enhancement in polymer solar cells, Polymers, 7(2), 333 – 372, 2015. Article


[94]     Xiao, Z., Bi, C., Shao, Y. Y. C., Dong, Q. F., Wang, Q., Yuan, Y. B., Wang, C. G., Gao, Y. L. Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution – processed precursor stacking layers, Energy & Environ. Science,7(8), 2619 – 2623, 2014. Article


[95]      Pathak, S. K., Abate, A., Leijtens, T. et al. Towards long – term photostability of solid – state dye sensitized solar cells, Adv. Energy Materials, 4(8),1301667,2014. Article


[96]      Fakharuddin, A.; Di Giacomo, F.; Ahmed, I.; Wali, Q.; Brown, T.M.; Jose, R. Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. J. Power Sources, 283, 61–67, 2015.Article


[97]      Jeng, J. – Y., Chiang, Y.-F., Lee, M.-H., Peng, S.-R., Guo, T.-F., Cheng, P., Wen, T.-C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. ,Adv. Mater., 25 (27), 3727 – 3732, 2013. Article


[98]      Docampo, P., Ball, J. M., Darwich, M., Eperon, G.E., Snaith, H.J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat. Commun., 4:2761, 1 – 6, 2013. Article


[99]      Roldan – Carmona, C., Malinkiewicz, O., Soriano, A., Espallargas, G. M., Garcia, A., Reinecke, P., Kroyer, T., Dar, M.I., Nazeeruddin, M. K., Bolink, H. J. Flexible high efficiency perovskite solar cells, Energy Environ. Sci., 7, 994 – 997, 2014. Article


[100]   Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., Sum, T. C, Lam, Y. M. The origin of high efficiency in low – temperature solution processable bilayer organometal halide hybrid solar cells, Energy Environ. Sci., 7, 399 – 407, 2014. Article


[101]    Hejri, M., Mokhtari, H., Azizian, M. R.,Ghandhari, M., Soder, L. On the parameter extraction of a five – parameter double – diode model of photovoltaic cells and modules, IEEE J. Photovoltaics, 4(3), 915 – 923, 2014. Article


[102]    Ishaque, K.,Salam, Z., Taheri, H. “Simple, fast and accurate two – diode model for photovoltaics modules”Sol. Energy Mater. Sol. Cells, 95(2), 586 – 594, 2011. Article


[103]    Sun, X., Asadpour, R., Nie, W., Mohite, A.D., Alam, M.A. A Physics – based analytical model for perovskite solar cells, IEEE J. of Photovoltaics, 5 (5), 1389-1394, 2015. Article

Published
2017-05-20
How to Cite
[1]
C. Ezike, G. Kana, and A. Aina, “Progress and Prospect on Stability of Perovskite Photovoltaics”, J. Modern Mater., vol. 4, no. 1, pp. 16-30, May 2017.
Section
Short Review