Mechanism of Organic Odor Generation from Thermophilically Digested Biosolids




In anticipation to generate more stabilized biosolids, thermophilic anaerobic digestion systems are widely used to destroy greater sludge organics thus making them less odorous. In this study, single-stage thermophilic (at 55 ℃) and mesophilic (at 37 ℃) anaerobic digesters were studied to compare organic removal efficiencies and sulfur-based odor generation from their biosolids. Although the thermophilic system removed about 9% more volatile solids than the mesophilic system, about 55 times more odorous organic sulfur compounds were measured from dewatered thermophilic biosolids. Different methanogenic species were found to be responsible for malodorous dewatered biosolids from the thermophilic anaerobic digester.


Anaerobic digestion, Solid reduction, Organic odor


Download data is not yet available.


H. Byliński, R. J. Barczak, J. Gębicki, and J. Namieśnik, “Monitoring of odors emitted from stabilized dewatered sludge subjected to aging using proton transfer reaction–mass spectrometry”, Environ. Sci. Pollut. Res., no. 26, pp. 5500–5513. Jan. 2019.

Z. K. Erdal, R. H. Forbes, J. Witherspoon, G. Adams, R. Hargreaves, R. Morton, J. T. Novak, and M. J. Higgins, “Recent Findings on Biosolids Cake Odor Reduction - Results of WERF Phase 3 Biosolids Odor Research”, J. Environ. Sci. Health A, vol. 43, no. 13, pp. 1575–1580. Dec. 2008.

M. J. Higgins, Y. C. Chen, D. P. Yarosz, S. N. Murthy, N. A. Mass, D. Glindemann, and J. T. Novak, “Cycling of Volatile Organic Sulfur Compounds in Anaerobically Digested Biosolids and its Implication for Odors”, Water Environ. Res., vol. 78, no. 3, pp. 243-252. Mar. 2006. 10.2175/106143005X90065

C. D. Muller, N. Verma, M. J. Higgins, and J. T. Novak, “The role of shear in the generation of nuisance odors from dewatered biosolids”, Proc. WEFTEC 2004, New Orleans, LA. Oct. 2004.

B. Ren, Y, Zhao, N, Lyczko, and A. Nzihou, “Current Status and Outlook of Odor Removal Technologies in Wastewater Treatment Plant”, Waste Biomass Valori., no. 10, pp. 1443–1458. Jun. 2019.

J. D. Zahler, R. H. Bucher, J. F. Ferguson, and H. D. Stense, “Performance and Stability of Two-Stage Anaerobic Digestion”, Water Environ. Res., vol. 79, no. 5, pp. 488-497. May. 2007. 10.2175/106143006X123157

J. Kim, and J. T. Novak, “Digestion Performance of Various Combinations of Thermophilic and Mesophilic Sludge Digestion Systems”, Water Environ. Res., vol. 83, no. 1, pp 44-52. Jan. 2011.

B. P. Lomans, C. Drift, A. Pol, and H. J. M. Camp, “Microbial cycling of volatile organic sulfur compounds”, Cell. Mol. Life Sci, vol. 59, pp. 575-588. Apr. 2002.

American Public Health Association (APHA) “Standard Methods for Examination of Water and Wastewater”, 20th edn. APHA, AWWA, WPCF, Washington, DC. 1998

D. Glindemann, S. N. Murthy, M. J. Higgins, Y. C. Chen, and J. T. Novak, “Biosolids incubation method for odorous gas measurement from dewatered sludge cakes”, Jour. Residuals. Sci & Tech., vol. 3, no. 3, pp. 153-160. Jul. 2006.

L. Ovreas, L. Forney, F. L. Daae, and V. Torsvik, “Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA”, Appl. Environ. Microbiol., vol. 63, no. 9, pp. 3367-3373. Sept. 1997.

G. Muyzer, E. C. Dewaal, and A. G. Uitterlinden, “Profiling of Complex Microbial-Populations by Denaturing Gradient Gel-Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes-Coding for 16s Ribosomal-RNA”, Appl. Environ. Microbiol., vol. 59, no. 3, pp. 695-700. Mar. 1993.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool”, J. Mol. Biol., vol. 215, no. 3, pp. 403-10, Oct. 1990.

J. T. Novak, and C. Park, “Chemical conditioning of sludge”, Water sci. Technol., vol. 49, no. 10, pp. 73–80. May. 2004.

B. Forbes, G. Adams, J. Witherspoon, D. McEwen, Z. Erdal, L. Hentz, S. N. Murthy, T. Card, D. Glindemann, and M. J. Higgins, “Impacts of the In-Plant Operational Parameters on Biosolids Odor Quality - Final Results of WERF Odor Project Phase 2 Field and Laboratory Study”, Proc. WEF/A&WMA Odors and Air Emissions 2004, Bellevue, WA, Apr. 2004.

A. C. Wilson, “Mechanisms of methanogenic inhibition in advanced anaerobic digestion”, Ph.D. dissertation for Virginia Polytechnic Institute and State University, 2009

S.A. Freeman, R. Sierra-Alveraz, M. Altinbas, J. Hollingsworth, A. J. M. Stams, and H. Smidt, “Molecular characterization of mesophilic and thermophilic sulfate reducing microbial communities in expanded granular sludge bed (EGSB) reactors”, Biodeg., vol. 19, no. 2, pp. 161-177. Apr. 2008.

F. Bu, N. Dong, S. K. Khanal, L. Xie, and Q. Zhou, “Effects of CO on hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions: Microbial community and biomethanation pathways”, Bioresource Technol., vol. 266, pp. 364-373. Oct. 2018.

J.L. Bivins, and J. T. Novak, “Changes in dewatering properties between the thermophilic and mesophilic stages in temperature phased anaerobic digestion systems”, Water Environ. Res., vol 73, no. 4, pp. 444-449. Jul. 2001.

D. Zhang, M. Strawn, T. Broderick, J.T. Novak, and Z.W. Wang, “Effects of anaerobic digester solids retention time on odor emission and dewaterability of biosolids subjected to various shear intensities, polymer doses, and storage duration times”, Environ. Sci.: Water Res. Technol., no. 6, pp. 1588-1596. Mar. 2020.

R. M. Fisher, J. P. Alvarez-Gaitan, and R. M. Stuetz, “Review of the effects of wastewater biosolids stabilization processes on odor emissions”, Crit. Rev. Environ. Sci. Technol., vol. 49, no. 17, pp. 1515-1586. Mar. 2019.






Short Communication

How to Cite

J. . Kim, “Mechanism of Organic Odor Generation from Thermophilically Digested Biosolids”, Int. Ann. Sci., vol. 10, no. 1, pp. 60-66, Sep. 2020.