Ovicidal and Larvicidal Activities of Ethanolic Leaf Extracts of Three Botanicals Against the Malaria Vector - Anopheles Gambiae

  • Funmilayo Bukola Egunjobi Department of Biological Sciences, Tai Solarin University of Education, Ijebu-ode, Ogun State
  • Ikem Chris Okoye Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State


Malaria, transmitted by Anopheles gambiae, has been a major public health concern in Africa. Chemicals used in the control of A. gambiae have caused a lot of havoc in the environment and to non-target organisms. More so, a high rate of resistance by these mosquitoes has been recorded. This study evaluated the ovicidal and larvicidal activities of ethanolic leaf extracts of Duranta erecta, Tridax procumbens and Pennisetum purpureum against A. gambiae. Phytochemical analysis of these plants revealed the presence of tannins, saponins, alkanoids, flavonoids, glycosides and anthroquinone. Ground dry leaves of each plant material were concentrated in 7 litres of 95% ethanol for 72 hours followed by filtration and evaporation. D. erecta, T. procumbens and P. purpureum yielded 617.2g, 598.3g and 552g of extracts respectively. The WHO standard for mosquito bioassay was adopted and concentrations 40, 100, 140 and 200 parts per million (PPM) were tested against 20 eggs and 25 larvae using emersion method. The hatching rate and % larval mortality of the extracts were recorded in which a concentration dependent increase was observed. High ovicidal activity (low egg hatchability) was recorded in D. erecta (LC50 -10.037 PPM) followed by P. purpureum and T. procumbens with LC50 values of 17.380 and 39.198 respectively. The highest larvicidal activity was observed in D. erecta (LC50 -76.943 PPM) compared to P. purpureum and T. procumbens (LC50 - 213.410 PPM and 214.217 PPM). Evidently, D. erecta ethanolic leaf extracts showed the best efficacy in the control of A. gambiae in this study. D. erecta is an environmentally friendly alternative in reducing the use of chemicals for mosquito control.

Keywords: Anopheles gambiae, Duranta erecta, Tridax procumbens, Pennisetum purpureum, Mosquito, Larvicidal, Ovicidal, Mosquito, Malaria


Download data is not yet available.


[1]       K. Krishnappa, K. Elumalai, S. Dhanasekaran, and J. Gokulakrishnan, “Larvicidal and repellent properties of adansonia digitata against medically important human malarial vector mosquito anopheles stephensi (Diptera: Culicidae),” J. Vector Borne Dis., vol. 49, no. 2, pp. 86–90, 2012.

[2]       WHO, Basic Malaria Microscopy, 2nd ed. WHO Press, World Health Organization, 2010.

[3]       K. Kovendan, K. Murugan, S. Vincent, and D. R. Barnard, “Efficacy of larvicidal and pupicidal properties of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract and Metarhizium anisopliae (Metsch.) against Culex quinquefasciatus Say. (Diptera: Culicidae),” J. Biopestic., vol. 5, no. Supplementary, pp. 170–176,  2012.  

[4]       C. Kamaraj et al., “Larvicidal activity of medicinal plant extracts against Anopheles subpictus and Culex tritaeniorhynchus,” Indian J. Med. Res., vol. 134, no. 1, pp. 101–106, 2011.

[5]       WHO, “Key facts Who is at risk ? Disease burden,” 2018.

[6]       S. Bhatt et al., “The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015,” Nature, vol. 526, no. 7572, pp. 207–211, 2015.

[7]       A. Gulland, “‘In Nigeria you can never escape malaria,’” The Telegraph, 2018.

[8]       M. Coetzee, R. H. Hunt, R. Wilkerson, A. D. Torre, M. B. Coulibaly, and N. J. Besansky, “Anopheles coluzzii and Anopheles amharicus,new members of the Anopheles gambiae complex,” Zootaxa, vol. 3619, no. 3, pp. 246–274, 2013.

[9]       P. Sharma, S. Khandelwal, T. Singh, and R. Vijayvergia, “Phytochemical Analysis and Antifungal Potential of Duranta erecta against Some Phytopatogenic Fungi,” Int. J. Pharm. Sci. Res., vol. 3, no. 8, pp. 2686–2689, 2012.

[10]     P. N. Akono et al., “Anopheles gambiae , vecteur majeur du paludisme à Logbessou , zone péri-urbaine de Douala ( Cameroun ),” Bull. Soc. Pathol. Exot., vol. 108, pp. 360–368, 2015.

[11]     E. J. Mavundza, R. Maharaj, J. C. Chukwujekwu, J. F. Finnie, and J. Van Staden, “Screening for adulticidal activity against Anopheles arabiensis in ten plants used as mosquito repellent in South Africa,” Malar. J., vol. 13, no. 173, pp. 1–5, 2014.

[12]     N. Moussavi et al., “Identification of chemical constituents of Zanthoxylum heitzii stem bark and their insecticidal activity against the malaria mosquito Anopheles gambiae,” Parasites and Vectors, vol. 8, no. 1, pp. 1–8, 2015.

[13]     M. K. Oumarou, L. Younoussa, and E. N. Nukenine, “Toxic effect of Chenopodium ambrosoides , Hyptis suaveolens and Lippia adoensis leaf methanol extracts and essential oils against fourth instar larvae Toxic effect of Chenopodium ambrosoides , Hyptis suaveolens and Lippia adoensis leaf methanol extracts a,” Int. J. Mosq. Res., vol. 5, no. 1, pp. 61–66, 2018.

[14]     A. A. Imam, A. Ibrahim, H. Abdullahi, and A. S. Amosa, “Malaysian Journal of Applied Sciences Comparative Larvicidal Properties and Detoxification Machinery of Bioactive,” Malaysian J. Appl. Sci., vol. 3, no. 1, pp. 9–23, 2018.

[15]     H. Suwaiba, A. A. Barde, P. S. Mao, and O. A. Aliyu, “GSC Biological and Pharmaceutical Sciences Larvicidal activity of Ageratum conyzoides L . extracts on Anopheles gambiae complex,” GSC Biol. Pharm. Sci., vol. 3, no. 3, pp. 1–5, 2018.

[16]     V. T. Sanyaolu, R. O. Awodoyin, and S. Ogunyemi, “A Survey of the Most Common Ornamental Plants in Southwest Nigeria,” Pacific J. Sci. Technol., vol. 19, no. 1, pp. 334–343, 2018.

[17]     R. Subsongsang and W. Jiraungkoorskul, “An Updated Review on Phytochemical Properties of ‘Golden Dewdrop’ Duranta erecta.,” Pharmacogn. Rev., vol. 10, no. 20, pp. 115–117, 2016.

[18]     G. . Prabhakar, P. Kamalakar, T. Ashok Vardhan, and K. Shailaja, “In-Vitro Screening of Antibacterial Activity of Seeds of Crotalaria verrucosa L. and Duranta erecta L.,” Eur. J. Pharm. Med. Res., vol. 2, no. 4, pp. 411–419, 2015.

[19]     J. E. Agwu, G. E. Odo, F. Ekeh, M. Uwagbae, G. Ngwu, and C. Ehilegbu, “Bioefficacy of Duranta erecta leaf extract on yellow fever and dengue vector , Aedes aegypti Linn . in Nigeria,” J. Med. Plants Res. Full, vol. 12, no. 11, pp. 124–132, 2018.

[20]     F. Nikkon, Z. A. Saud, K. Hossain, M. S. Parvin, and M. E. Haque, “Larvicidal effects of stem and fruits of Duranta repens against the mosquito Culex quinquefasciatus,” Int. J. PharmTech Res., vol. 1, no. 4, pp. 1709–1713, 2009.

[21]     M. Z. Norhafizah, B. S. Ismail, and T. S. Chuah, “Herbicidal activity of Pennisetum purpureum ( Napier grass ),” African J. Biotechnol., vol. 11, no. 23, pp. 6269–6273, 2012.

[22]     C. C. Okaraonye and J. C. Ikewuchi, “Nutritional and Antinutritional Components of Pennisetum purpureum ( Schumach ),” Pakistan J. Nutr., vol. 8, no. 1, pp. 32–34, 2009.

[23]     S. S. Rajaram and G. G. Ashvin, “Preliminary Phytochemical Analysis of Leaves of Tridax procumbens Linn .,” Int. J. Sci. Environ., vol. 2, no. 3, pp. 388–394, 2013.

 [24]    C. J. Ikewuchi, C. C. Ikewuchi, and N. M. Igboh, “Chemical Profile of Tridax procumbens Linn,” Pakistan J. Nutr., vol. 8, no. 5, pp. 548–550, 2009.

[25]     M. C. Rathy, U. Sajith, and C. C. Harilal, “Larvicidal efficacy of medicinal plant extracts against the vector mosquito Aedes albopictus,” Int. J. Mosq. Res., vol. 2, no. 2, pp. 80–82, 2015.

[26]     C. Fernanda et al., “Levels of Tannins and Flavonoids in Medicinal Plants : Evaluating Bioprospecting Strategies,” Evidence-Based Complement. Altern., vol. 434782, p. 7, 2012.

[27]     V. Ghosh, S. Sugumar, A. Mukherjee, and N. Chandrasekaran, Neem ( Azadirachta indica ) Oils. Elsevier Inc., 2016.

[28]     N. Ivoke, F. Chukwuemenam, and L. Owoicho, “Evaluation of ovicidal and larvicidal effects of leaf extracts of Hyptis suaveolens (L) Poit (Lamiaceae) against Anopheles gambiae (Diptera: Anophelidae) complex,” Anim. Res. Int., vol. 6, no. 3, pp. 1072–1076, 2009.

[29]     S. Khalid, A. Shahzad, N. Basharat, M. Abubakar, and P. Anwar, “Phytochemical Screening and Analysis of Selected Medicinal Plants in Gujrat,” J. Phytochem. Biochem., vol. 2, no. 1, pp. 2–4, 2018.

[30]     M. G. Ajuru, L. F. Williams, and G. Ajuru, “Qualitative and Quantitative Phytochemical Screening of Some Plants Used in Ethnomedicine in the Niger Delta Region of Nigeria,” J. Food Nutr. Sci., vol. 5, no. 5, pp. 198–205, 2017.

[31]     F. Mumtaz and S. M. Raza, “Qualitative phytochemical analysis of some selected medicinal plants occurring in local area of Faisalabad, Pakistan,” J. Pharm. Altern. Med., vol. 3, no. 3, pp. 17–21, 2014.

[32]     T. M. Bandiola, “Extraction and Qualitative Phytochemical Screening of Medicinal Plants: A Brief Summary,” Int. J. Pharm., vol. 8, no. 1, pp. 137–143, 2018.

[33]     WHO, Guidelines for Laboratory and Field Testing of Mosquito Larvicides. 2005.

[34]     B. Jayalakshmi, K. A. Raveesha, and K. N. Amruthesh, “Phytochemical investigations and antibacterial activity of some medicinal plants against pathogenic bacteria,” J. Appl. Pharm. Sci., vol. 1, no. 5, pp. 124–128, 2011.

[35]     M. M. Serena, M. Balasubramani, K. Rajan, and I. A. J. Gerald, “Evaluation of the larvicidal activity of the leaf extracts of Duranta erecta Linn . ( Verbenaceae ) on the lar vae of Culex quinquefascitatus ( Say ) ( Culicidae ),” J. Biopestic., vol. 3, no. 3, pp. 582–585, 2010.

[36]     R. Dhanabalan, A. Doss, M. Jagadeeswari, S. Balachandar, E. Kezia, and V. Parivuguna, “In vitro Phytochemical Screening and Antibacterial Activity of Aqueous and Methanolic Leaf Extracts of Tridax procumbens against Bovine Mastitis Isolated Staphylococcus aureus,” Ethnobot. Leafl., vol. 12, pp. 1090–1095, 2008.

[37]     S. Christudas, T. M. Kulathivel, and P. Agastian, “Phytochemical and antibacterial studies of leaves of Tridax procumbens L .,” Asian Pac. J. Trop. Biomed., vol. 2, no. 1, pp. S159–S161, 2012.

[38]     N. Savithramma, M. L. Rao, and G. Bhumi, “Phytochemical screening of Thespesia populnea (L.) Soland and Tridax procumbens L. N.,” J. Chem. Pharm. Res., vol. 3, no. 5, pp. 28–34, 2011.

[39]     H. O. Edeoga, D. E. Okwu, and B. O. Mbaebie, “Phytochemical constituents of some Nigerian medicinal plants,” African J. Biotechnol., vol. 4, no. 7, pp. 685–688, 2005.

[40]     A. U. Brantley, J. O. Akaninwor, and A. B. Achor, “Phytochemical Composition and Antidiabetic Properties of Aqueous Stem Extract of Pennisetum purpureum on Alloxan – Induced Diabetic Wistar-Albino Rats,” Open Sci. J. Pharm. Pharmacol., vol. 3, no. 6, pp. 72–79, 2015.

[41]     O. R. Johnson-Ajinwo and J. Chime, “Mineral Content and Chemical Composition of Napier ( Pennisetum purpureum ) Grass,” Saudi J. Med. Pharm. Sci., vol. 4, no. 4, pp. 382–386, 2018.

[42]     B. Inalegwu and O. A. Sodipo, “Antimicrobial and foam forming activities of extracts and purified saponins of leaves of Tephrosia vogelii,” Eur. J. Exp. Biol., vol. 5, no. 5, pp. 49–53, 2015.

[43]     S. D. Desai, D. G. Desai, and H. Kaur, “Saponins and their Biological Activities,” Pharma Times, vol. 41, no. 3, pp. 13–16, 2009.

[44]     P. Pietta, “Flavonoids as Antioxidants,” J. Nat. Prod., vol. 63, pp. 1035–1042, 2000.

[45]     I. Hernandez, L. Alegre, F. Van Breusegem, and S. Munne, “How relevant are flavonoids as antioxidants in plants?,” Trends Plant Sci., vol. 14, no. 3, pp. 125–132, 2009.

[46]     L. A. Weston and U. Mathesius, “Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy,” J Chem Ecol, vol. 39, pp. 283–297, 2013.

[47]     L. H. Yao, Y. M. Jiang, F. A. Tomas-Barberan, N. Datta, R. Singanusong, and S. S. Chen, “Flavonoids in Food and Their Health Benefits,” Plant Foods Hum. Nutr. 59, vol. 59, pp. 113–122, 2004.

[48]     C. Brunetti, M. Di Ferdinando, A. Fini, S. Pollastri, and M. Tattini, “Flavonoids as Antioxidants and Developmental Regulators : Relative Significance in Plants and Humans,” Int. J. Mol. Sci., vol. 14, pp. 3540–3555, 2013.

[49]     S. Kumar and A. K. Pandey, “Chemistry and Biological Activities of Flavonoids: An Overview,” Sci. J. Vol., vol. 162750, p. 16, 2013.

[50]     C. Di et al., “Isolation of flavonoids from Anemopaegma arvense ( Vell ) Stellf . ex de Souza and their antifungal activity against Trichophyton rubrum,” Brazilian J. Pharm. Sci., vol. 49, no. 3, pp. 559–565, 2013.

[51]     R. B. Kshatriyaa and G. M. Nazeruddin, “Bioactive flavonoids of therapeutic importance,” 7th Int. Symp. Feed. Recycl. Polym. Mater., no. October, pp. 23–26, 2013.

[52]     P. O. Ukoha, E. A. C. Cemaluk, O. L. Nnamdi, and E. P. Madus, “Tannins and other phytochemical of the Samanaea saman pods and their antimicrobial activities,” African J. Pure Appl. Chem., vol. 5, no. 8, pp. 237–244, 2011.

[53]     E. F. Al-Jumaily, H. A. Abdul-Ratha, and R. H. Raheema, “Extraction and Purification of Tannins from Plantago lanceolata L. and assessment of their antibacterial activity on pathogenesis of enteropathogenic E. coli in vitro and in vivo,” Trends Life Sci., vol. 1, no. 1, pp. 17–21, 2012.

[54]     A. V. Pereira, G. M. Santana, M. B. Góis, and D. M. G. S. Ana, “Tannins obtained from medicinal plants extracts against pathogens: antimicrobial potential,” Battle Against Microb. Pathog. Basic Sci. Technol. Adv. Educ. Programs, pp. 228–235, 2015.

[55]     A. Molan and A. M. Faraj, “The effects of condensed tannins extracted from different plant species on egg hatching and larval development of Teladorsagia circumcincta (Nematoda : Trichostrongylidae),” Folia Parasitol. (Praha)., vol. 57, no. 1, pp. 62–68, 2010.

[56]     C. M. Furlan, L. B. Motta, and D. Santos, “Tannins: What do they represent in plant life?,” in Tannins: Types, Foods Containing, and Nutrition, no. Chapter 10, 2010, pp. 1–13.

[57]     S. Dhanasekaran, K. Krishnappa, A. Anandan, and K. Elumalai, “Larvicidal , ovicidal and repellent activity of selected indigenous medicinal plants against malarial vector Anopheles stephensi ( Liston .), dengue vector Aedes aegypti ( Linn .) and Japanese encephalitis vector , Culex tritaeniorynchus ( Giles .) ( Dipt,” J. Agric. Technol. 2013, vol. 9, no. 1, pp. 29–47, 2013.

[58]     M. Govindarajan, A. Jebanesan, and T. Pushpanathan, “Larvicidal and ovicidal activity of Cassia fistula Linn . leaf extract against filarial and malarial vector mosquitoes,” Parasitol. Res., vol. 102, pp. 289–292, 2008.

[59]     C. Panneerselvam, “Adulticidal , repellent , and ovicidal properties of indigenous plant extracts against the malarial vector , Anopheles stephensi ( Diptera : Culicidae ),” Parasitol. Res., vol. 112, pp. 679–692, 2013.

[60]     G. Marimuthu and S. Rajamohan, “Larvicidal and ovicidal properties of leaf and seed extracts of Delonix elata ( L .) Gamble ( Family : Fabaceae ) against malaria ( Anopheles stephensi Liston ) and dengue ( Aedes aegypti Linn .) ( Diptera : Culicidae ) vector mosquitoes,” Parasitol. Res., vol. 111, pp. 65–77, 2012.

[61]     L. Younoussa, E. N. Nukenine, and C. O. Esimone, “Toxicity of Boswellia dalzielii (Burseraceae) Leaf Fractions Against Immature Stages of Anopheles gambiae (Giles) and Culex quinquefasciatus (Say) (Diptera: Culicidae).,” Int. J. iIsect Sci., vol. 8, pp. 23–31, 2016.

[62]     S. Cheah, J. Tay, and L. Chan, “Larvicidal , oviposition , and ovicidal effects of Artemisia annua ( Asterales : Asteraceae ) against Aedes aegypti , Anopheles sinensis , and Culex quinquefasciatus ( Diptera : Culicidae ),” Parasitol. Res., vol. 112, pp. 3275–3282, 2013.

[63]     G. Elango, A. Bagavan, C. Kamaraj, A. Abduz Zahir, and A. AbdulRahuman, “Oviposition-deterrent , ovicidal , and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi ( Diptera : Culicidae ),” Parasitol. Res., vol. 105, pp. 1567–1576, 2009.

[64]     Government of Western Australia Department of Water, “Aerial spraying of crops with pesticides,” no. February, pp. 1–26, 2010.

[65]     M. Govindarajan, A. Jebanesan, and T. Pushpanathan, “Studies on effect of Acalypha indica L . ( Euphorbiaceae ) leaf extracts on the malarial vector , Anopheles stephensi Liston ( Diptera : Culicidae ),” Parasitol. Res., vol. 103, pp. 691–695, 2008.

[66]     B. M. Maniafu, L. Wilber, I. O. Ndiege, C. C. Wanjala, and T. A. Akenga, “Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae,” Rio Janeiro, vol. 104, no. 6, pp. 813–817, 2009.

[67]     J. M. Adesina, A. R. Jose, Y. Rajashekar, and K. D. Ileke, “Persea americana ( Mill .) seed extracts : Potential herbal larvicide control measure against Anopheles gambiae Giles , 1902 ( Diptera : Culicidae ) Malaria vector,” Int. J. Mosq. Res., vol. 3, no. 2, pp. 14–17, 2016.

[68]     C. F. Araonu, A. C. . Ike, and G. I. Ngwu, “Larvicidal effects of crude methanolic and n-hexane extracts of Cymbopogon citratus and Ocimum gratissimum on Anopheles gambiae mosquito,” Niger. J. Parasitol., vol. 39, no. 1, p. 169110, 2018.

How to Cite
F. Egunjobi and I. Okoye, “Ovicidal and Larvicidal Activities of Ethanolic Leaf Extracts of Three Botanicals Against the Malaria Vector - Anopheles Gambiae”, Int. Ann. Sci., vol. 9, no. 1, pp. 111-121, Mar. 2020.
Research Article