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ABSTRACT

The current paper investigates the dynamics of the dissipative system with a cubic nonlinear time-
delayed of the type of the damping Duffing equation. A coupling between the method of the multiple
scales and the homotopy perturbation has been utilized to study the complicated dynamic problem.
Through this approach, a cubic nonlinear amplitude equation resulted in at the first-order of
perturbation; meanwhile, a quintic equation appears at the second-order of perturbation. These
equations are combined into one nonlinear quintic Landau equation. The polar form solution is used,
and linearized stability configuration is applied to the nonlinear amplitude equation. Also, a second-
order approximate solution is achieved. The numerical illustrations showed that the damping, delay

coefficient, and time delay play dual roles in the stability behavior. In addition, the nonlinear coefficient

plays a destabilizing influence.

Keywords: Homotopy perturbation method, multiple scales method, stability analysis,

damping delay oscillator Duffing equation.

1 Introduction

Through the last five decades, the time delayed
differential equations have a wide range an
modeling of dynamical phenomena in several
fields in science, such as; electric, pneumatic and
neuroscience,

hydraulic networks,

optoelectronics, as well as biological or
mechanical systems, long transmission lines,
robotics, etc. The description of highly potential
dynamical influences caused by delayed feedback
aging  is
Mathematically, they introduce an important

or control, of great interest.
class of dynamical systems to be studied by
advanced mathematical techniques, involving e.g.
theory of bifurcation, semi-group theory or
singular perturbations.

The time delay generally appears in different
control systems such as aircraft, many dynamical
and electrodynamic systems, chemical or the
measurements. In  contrast to ordinary
differential equations, the time-delay systems are

of infinite dimensional in nature. The time-delay

is, in many cases, a source of instability. The
instability issue of control systems with delay is,
therefore, both of theoretical and great practical
significance. Recently, much interest has been
depicted to investigate the dynamics of circuits
described by delayed nonlinear equations, which
exhibit chaotic attractors; they have found
interesting applications in secure
communications as given in Ref. [1]. The study of
the dynamic behavior of such circuits is rather
difficult. During the past two decades, more
effort has been done in the numerical as well as
theoretical analysis of uncertain systems with
time-delay. Different results have been obtained
to provide, for example, finite-dimensional
for stability/instability.

classical

sufficient conditions

Away  from linear  perturbation
techniques, which depend on a small parameter,
the homotopy perturbation is a new technique
applied to obtain solutions regardless of the
restriction to small parameters.

On the other hand, delayed differential equations

are utilized to describe wide physical phenomena
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in engineering, physics, chemistry, biology,
economics, and medicine,
Kruthika et al. [2] investigate the local stability of

a gene-regulatory network and immunotherapy

among others.

for cancer modeled in a nonlinear time-delay
system. Many articles have appeared as collecting
theorems homotopy methods for solutions that
concerned with the properties of delayed systems
[3-6]. Alomati and coworkers in [5] introduced
an algorithm to find approximate analytical
solutions for delay differential equations by using
the homotopy analysis method and, also, the
modified homotopy analysis method. They used
their method to obtain an approximate solution
of different linear as well as nonlinear differential
equations with numerical predictions that agree
well with the numerical integration solutions.
Olvera et al. [6] applied an enhanced multistage
HPM to solve delay differential equations having
constant or variable coefficients. The method is
based on a sequence of subintervals that provide
approximate solutions. This method fails to
investigate the stability properties. EI-Dib [7, §]
applies a modulating method that based on the
homotopy perturbation to study the stability
behavior for strongly nonlinear oscillators.
Homotopy perturbation method is a relatively
new method [9-14]. Like other methods, it has
theoretical and application limitations. Some
nonlinear equations are imposed without a linear
variable term. The solutions of these equations
lead to non-oscillation solutions. Homotopy
perturbation method obtains oscillation solutions
through a modification of the nonlinear
equations by suggested an auxiliary term [15].
The procedure is given in [16] and a relatively
comprehensive survey on the concepts, theory,
and applications of homotopy perturbation
method are reported through References
[17, 18]. This method is used in a parameter-
expansion method [19, 20, and 21]. Homotopy
perturbation method with two expanding
parameters has been studied by He [22]. The
parameterized homotopy perturbation method
has been addressed by Adamu and Ogenyi [23]
for a modification of the HPM. They introduce a
new parameter, alpha, which can be optimal,
determined when it is equal to unity; it turns to
its classic version.

The above modifications of the homotopy
perturbation method cannot use for studying the
stability behavior for solutions of the nonlinear
equations. In Ref. [15], a modulation of the
homotopy perturbation is used to investigate a
nonlinear Mathieu equation. In these approaches,
the arbitrary constants of the primary solution of
homotopy equation are suggested to be
modulated with slowness time. Thetrefore, one
needs to improve the homotopy perturbation to
allow studying the stability. Herein, we suggested
a modification for the homotopy perturbation
El-Dib

suggests a modified version of the homotopy

included several time-scales. In [§]

perturbation method by absorbing the multiple
method.  This
especially well for nonlinear oscillators. The

scales modification  works
multiple scales method is a well-known method
in the perturbation theory. It is effective for the
weakly nonlinear oscillators. However, the
combination of the multiple scales method with
the homotopy perturbation method yields an
unexpected result that used for all strongly
nonlinear oscillators. This analysis is named as
the  homotopy-multiple-scales  perturbation
method. Nonlinear systems subjected to a
harmonic excitation have been addressed by
Nayfeh [24, 25]. Mathematically, the excitations
appear either as an inhomogeneous term or as
time-dependent coefficients in the governing
equations. The multiple scales method is one of
the important methods that avoid the secular
terms in the solution, especially, at the parametric
resonances. It leads to uniform expansions for
the solutions [24, 25]. Therefore, it is necessary to
develop and improve the homotopy perturbation
to recover systems that subjected to parametric
excitations and producing uniform analytical
approximations. Hence, we are needed to make a
matching between the multiple time-scales and
the homotopy perturbation.

Herein, we introduced a homotopy-multiple-
scales perturbation method. Three-time scales
method is used. The second-order approximate
periodic solution is achieved. This method allows
finding the stability properties for a damping
Mathieu equation that contains the periodic
delayed parameter.
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1.1  The Basic Idea for the Method of Homotopy-Multiple-Scales Perturbation (HMSP)

The principles and properties of the HPM and its applicability for several kinds of differential equations
are given in varies among researchers [10-18], a general nonlinear equation is considered in the form

L(y)+N(y) = f(0), (1.1)
where L is an auxiliary linear operator, N is a nonlinear operator and f (t) is the inhomogeneous part. The
nonlinear equation (1.1) has subject to the initial condition: Y(0) =aand y(0) =b. The concept of the
homotopy perturbation procedure is to construct the following one-parameter family of equations:

H(Y.p) = L) = L(up) + p[L (o) +N(Y) - F (D] =0, p [0} (12
where p the embedding parameter is called a bookkeeping parameter andU, is the initial guess. The
embedding parameter p changes from zero to unity. It is obvious that when p — 0 Eq. (2) becomes a
linear differential equation L(Y) = 0, for which an exact solution can be calculated. As p — 1, it becomes
the original nonlinear one. So the increasing process of p from zero to unity is just that of Eq (1.2) to Eq

(1.1). The homotopy perturbation method depends on the homotopy parameter p in order to expand

2 3
y(t.p) = Yo () + oy () + p7y2 () + p7ys(O) +... 1.3)
Often, one iteration method cannot work due to the complicated nonlinear equation. At this end, we need
to an additional iteration method. The perturbed for the natural frequency @, may be useful. Using the

parameter p to obtain an extension for the natural frequency as
=y +pa)1+p2a)2 +.o.. (1.4
where @gis known as a linear natural frequency and, @;j are unknowns determined from solving the
solvability conditions that arise by removing the secularity? This secularity produced in each order of
perturbation due to the inhomogeneity in equations describing the perturbation orders. Instead of the two
expansions (1.3) and (1.4) one can get one expansion method plays the two roles. This can be achieved as
follows:
If the limiting case of equation (2) when p — 0, has the form
d®y(t
L(D)y=%2()+a)2y(t)=0. (1.5)
Then, according to linear differential equations theory, the general solution of (1.5) is sought in terms of

two linearly independent solutions. Assuming that, these solutions are COS @t and,SIN @t so that
y(t) = acosat +bsin «t. (1.6)

When p >0, one can assume that the frequency ®® has been replaced by a function in p so that the
linear harmonic equation (1.5) comes in the form
d*Yo(t, )
dt?

where Yg(t, p),is an analytical function of both # and p. consequently, the solution of the harmonic

+Q%(p)o(t.p) =0, (1.7)

equation (1.7) becomes

Yo (t, p) =acosQ(p)t +bsin Q(p . (1.8)
Assuming that the frequency Q(p) has been expanded as a power series in p [22] such that

Q(p)=w+pa)1 +p2a)2 +.. (1.9)

where @,; N=12,...are unknowns’ arbitrary parameters? Employing the expansion (1.9) with (1.8) gets
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Yo(t, p) = acos(a)t + o pt+ a)zpzt + )+ bsin (a)t + o pt+ a)zpzt + ) (1.10)
Applying Trigonometry rules yields

Yo (t, p) = [acos(colpt + o, pPt+ )+ bsin (a)lpt + o, pPt+ ...)]coswt

(1.11)
+ [b COS(a)lpt +wypPt+ )— asin (a)lpt + P2t + ...)]sin a.
If we recall the coefficients of both COS @t and Sin ait as
acos(wlpt + a)zpzt + )+ bsin (a)lpt + a)zpzt + ): A(pt, P2, p3t,...) 112

bCOS(a)lpt +w,p°t +...)— asin (a)lpt +w,p°t + ): B(pt, P2, p3t,...)
So that (1.11) becomes
Yo (t, p) = A(pt,pzt,p?’t,...)comt + B(pt,pzt,p3t,...)sin at. (1.13)
Cleatly, both the amplitudes A and B are unknown petiodic functions, in the slowness-time. Expression
(1.13) represents a primary solution of the homotopy equation (1.2) with arbitrary p . As p = 0 into (1.13),
the result coincides with the primary solution (1.6), where A(0) =aand B(0) =b. when p —1, the final
form of the primary solution obtained as
Yo (t) = A(t)coswt + B(t)sin wt, (1.14)
where Yq (t,l) =Y (t) Use the definition T,, = pnt; n=0,12, ...,where Tyrepresents the fasten time and
T, refer to the slow time and T, refer to the slower time and so on. Therefore, (1.13) becomes
Yo(t, p) = A(T, T,,T3,...)c0s @Ty + B(T;, T, T3,...)sin T, (1.15)

This primary solution constructed from the fasten solution and unknown slowness solutions. These
functions are determined such that the solution becomes uniform.

At this end, of the view, one can assume that forl> p >0, the function y(t, p)has the form
Y (Ty,T1,Ty,...,0) . From the point of view of the multiple scales properties [24], the first derivative and

the second derivative for a function having multi-scales may be replaced by the following expansions:

d d?
4= Do+ A0 +p?Dy +... and o D& +2pDoD; + p?(Df +2DyD,) +..., (1.16)
where D,, = ——is used. At this end, the expansion (1.3) becomes
n
Y(t, 2) = Yo (To,To Tave) + A1 (To, Te, T, )+ 22 V2 (To, o To) + o 1.17)

This represents one expansion with two perturbations, one in the independent variable tand the other in
the dependent variable y(t, ,0). This expansion has been successfully used by Nayfeh [24, 25]. Therefore,

the multiple—scales-homotopy statement can be built with zero initial guesses as

H(y, p) = Ly(To, To, T )]+ pIN[y(To. Ty, T, )] F(0)} =0, pef0,1] (1.18)
The approximate solution for the nonlinear problem is obtained as p —> 1, thus we have
Yapp(t) = Ele(TO’TllTZ’--) = Yo(t) + Y1 (t) + Yo (t) + y3(t) +... (1.19)

2  Mathematical problem

In this paper, we apply HPM [9-18, §] for the solution of the delayed Duffing equation. In order to
demonstrate how this method works, let us consider the following cubic nonlinear time-delayed Duffing
oscillator, defined as

d’y ., dy

W+2NE+WZY+QY3 Zﬂb— yg(t—r)]yd (t—r), 2.1)
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where 4 the coefficient of damping term, 77 the delayed amplitude, 7 the time delayed parameter, @ the
natural frequency and Y, denote the function of the delayed influence.

Define the two parts of the nonlinear equation (2.1):
2

d d
L<y>=?§+w2y and N(y)=2ud—{+Qy3—n[l—yﬁ(t—r)]yd(t—r) 2.2)

Define the homotopy parameter p that monotonically increases from zero to unity. Construct the
homotopy state in the form:

H(y,p) = L(y)+oN(y)=0; p[01]} 23)
Uses the time-scales T, =p"t;n=0,1,2s0 that the function of y(t,p)transformed to Y(Ty, T4, T5).

Therefore, the homotopy-multiple —scales statement for equation (2.1) can be built with zero initial guesses

as
H(y. ) = Ly(To T To) [+ AN[y(To, T T2)] =0, pe0] 24

Using Taylor expansion, one can expand the delay function Y4 (TO -7,Ty—pr, Ty — pzr) as
Yd (To —,Ti—p7T, —P27)= [J-_PfDl +P2(%72D12 _TD2)+---]yd (To —7, T, Ty), 2.5)

0
where D, = Tis used. Insert (1.106), (1.17) and (2.5) into (2.4) the homotopy-multiple —scales statement
n

becomes
H(y.)=(0F + @2y + P21+ 20)D0y + Q- nll- Vi To - e T e Mo el ¢
+ p?[[D2 + 204D, + 2,0, )y + 7D (1-3y2 (Mo — 2. Ty, o) s o 2. T, Tp) .. =0 '
Expand the function Y(Tg, Ty, T,, p) as a power seties in p
V(T T0,T2.0) = Yo (To. T, To) + A1 (To. T To) + £ Y2 (To T To) + e 2.7)
where Y, (Tg,T1,T,) unknowns determined by are expanded the homotopy function as a power series in

P and solving the resulting power-order equations. Also, the function Y4(Tg—7,T;,T,,p)can be

expanded as
Ya (To=7.T0.T2.0) = a0 (To — 7. T0.To) + a1 (To = 7. T T) + p7Ya2 (To — 7. T To) +.. . (2.8)
3 Sequence Solutions for the Perturbed System

In this section, we deal with obtaining the uniform three-orders-solution Y, Y,and Y,then combined

them to find the approximate solution. To accomplish this, we substitute (2.7) and (2.8) into equation (2.6)
the primary solution of equation (2.6) has the form

Yo(To,T1,T2) = ATy, To '™ + ATy, T, ). CRY)
Consequently, we have

Yao(To = 7.T,To) = ATy, T e + A(T,, T, Je ' horier. (32)
The first and the second-order perturbation equations are listed below:
(Dg + )yl =~2DoDy Yo — 24Dg Yo — QYs — Y30 + M ao, 3.3)

(Dg + a’z)yz = —(2DyD, + 24Dy )y, — (D12 +2DyD, +2uD; )YO —3Qy1y§
— 31y 5o Ya1 +37DyYdo + a1 — 1Dy Ygo-

. . . L . Ha,
The uniform solution requires eliminating the secular terms that contain the factor € "o Tn order to find

(3.4)

uniform valid expansion in this case, we must remove, the source of terms that produce secular terms in

(3.3). The removing of these terms implies the following solvability conditions:
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D1A+yA+iie*‘wa—i(Qme*‘m)Az/X - 0. (3.5)
20 20
The uniform solution of equation (3.3) has the form
1 > . R
Vi (To, T T,) :8_2[(Q+77e 3|a)r)A3e3la)To +(Q+77e3"‘”)A3e 3Ia)TO] 56
®
Consequently,
T T Tt [( —3im) 3, 3iaT, o -3ior ( 3im)—3 3iaT, 3ia)1] 3
Ya1(To =7, T1, 2)_8(02 Q+re 307 |ade¥@log 0T L (Q 1 pedlT |A3e I Tog (3.7

Substituting the first-order uniform solution (3.6) into the second-order problem, the solution of equation
(3.4) with no secular terms becomes

3 Biwr —Siwr \A5 50T 21 Biwr R a4 7 3iaT,
Yo (T, T, T))=————(Q+7e Q+ne A>e>' @ - = _(Q+1ne A% Aeg?'@l
2RO 24><8a)4( I | 64a)4( )

3
+ 4
24 x 8w
3i =3iwr . —3ia)z’( - n —iwrj 3. 3iwT,
+ne + 2iwnte +i—e Ae” %o

1607 (Q 7 i prl
3i
160°

(Q N 77esimXQ +neSia)r)K5e—5ia)To - 214 (Q +7783ia)r)2 A4 pp-dioT,
4w

+ (Q+T7e3ia)r _2iw772_e3iwz'(lu_iziein]K3e_3ino
w

—iner e%iwr(Q N ne—3ia)r)A4K63ia)(To—r) N 169 _inor e3ia)r(Q N ne3ia)r)K4Ae—3ia)(To—z').
w w

(3.8)
Elimination of the source of secular terms from equation (3.4) yields the following solvability condition:

2iwD, A+ D2A+(2u + 7 )D,A—9nD, A’ Ae " + siz (Q+ne ¥ YQ+ne e )A°A2 =0.
w

(3.9)
By the help of the solvability condition (3.5) one can replace the terms of D, A, D/Aand D, (A2 K) by

their un-derivative equivalent terms, then (3.9) becomes

. : . .
DA+ | g2 + e + L+ 2ior) L e 2o | A DT gotor| gy VI (qior _ geeier) | a2
20 4o 20 2

2
@

+ 4—3)2 (Q+ner {— 2u+ne’ + ;Z) (N )}AZA

3 [— 5Q2 + Qryl+ e + 66" —17e7" —36iwze " )}ASAZ L
1600° | + e " + 67 (6icor +1)1— 26 2" ) o

(3.10)
Therefore, we are in need to combine equations (3.5) and (3.10). This combination can be achieved by
multiple equations (3.5) with 0 and adding to equation (3.10) multiplied with p2 resulting the first two

terms in the transformation of the derivative in multiple scale method setting o —1. At this stage the

d
amplitude functions and the expansion of the detivative (le + p? D, )A(Tl,TZ) becomes a A(t). Finally,

we obtain the following equation that governed the amplitude equation:
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d /R i 2 S . 772 _2i
— A+ g+i——e"" +— +nure™” +(1+2ior)——e 7 ||A
dt {u 2w 26&)[# e ( )4602

+ 422 {—18i nuowe™" — 37721'(1— 2e2er )— (Q +netr {Z,u +2iwo—nre " —;—Z)(ei“” —3eier )ﬂ AZA
3i

o [-5Q% +Qnl+er + e ~17e7" —36iwze ™ )+ ne " +6p* (Biwr +1)1—2e 2" JJA°A? =0
[43)

(3.11)
This is nonlinear first-order differential equation having complex coefficients of Landau form. The solution
of this equation is used to discuss the stability of the problem. This equation can be satisfied by using the

following transformation:

Alt) = alte™ ™0, (3.12)
where a(t) and S(t) are real functions to be determined and
1 2 7]2 .
@ =—| u® +n{l+ ur)cosor + —— (cos 2wr + 2wr sin 207) . (3.13)
20 4e?

Substituting (3.12) into (3.11) and separating real and imaginary parts we get

2
d—a+{(y+2i(l+ ,ur)sin an')+77—3(sin 20t - 2wt COSZan’)}a
1)

dt 8w
3 | - 4n0?(9ur +1)sin or - 2no(2u - Qr)coswr — 6n2wr 3 (3.14)
— a .
8w® +14n20r cos 20t —3n? sin 21 — 4Q(uw + nsin wr)
3y [n(sin 4or —12sin 20r - 3607 + 7207 cos207 )| 5 0
— a =VU.
1603 | + Q(sin 3wr + 3601 cos wr — 23sin wr)
dp 3 —2Q(2w2+ncosa)1)+277a)(2y—Qr)sina)r+172 )
4 — a
dt  8w®|- 4nw®(9ur +1)cos wr —15n°wr sin 2wt —3n% cos2wr

(3.15)

" 160°

Equation (3.14) is a nonlinear first-order differential equation with real coefficients. Suppose it has a steady-

3 |72 cosdar +6n%(1-2c0s 20t — 2401 Sin 207 ) 4 _g
a” =0.
+Qn(cos3wr — 36wz sin wr —11cos wr )—5Q2

state solution &, given by

n(sin 4wr —125sin 27 —36wr + 72wr c0s2wr )| ,
Q)
+Q(sin 3wr + 3607 coswr — 23sin wr) 0

2 i 2
+ 3[477@ (9uz +1)sin wr +2na(2u - Qr)coswr +61 “”}aé (3.16)
7

~14n° wr c0s 207 + 31 sin 201 + 4Q(,ua) +7sin a)z')

3 2
Lo (,u+l(1+,u‘r)sin a)‘rj+n—(sin 201 — 201 05207 ) | = 0.
3n 20 8w*

If we perturb the amplitude function ¢ (t) around the steady-state response such that
where the function ¢ (t) represents the small deviation from the steady-state response. Substituting (3.17)

into (3.14), using (3.16) and linearizing it in ¢ (t) yields

ISSN: 2456-7132
Available online at Journals.aijr.in


https://journals.aijr.in/index.php

19

Periodic Solution and Stability Bebavior for Nonlinear Oscillator Having a Cubic Nonlinearity Tine-Delayed

3 | —4nw®(Qur +1)sin wr — 2nw(2u—Qr)coswr —6nwr |
= al

doy 4e® +14n%wr cos2wr —3n? sin 207 — 4Q(uw +1sin wr) o =0 (3.18)
dt 2 2 e
+ 4+ 2L (14 pr)sin or +77—3(sin 201 — 201 C0S 207 )
0] 20
This is a linear first-order equation which can be satisfied by
oy (t)= e, (3.19)

where |& | <<1 to ensure the perturbation to be small and the constant ¥ is the modulation growth rate
which is given by

B 3055 [— 4nw® (9uz +1)sin wr —2nw(2u—Qr)coswr —67720)2']

4e® +14772an' COSZ(UZ'—?:?]ZSin 2an'—4Q(ya)+77$in a)r) (3.20)
21 n’
+ A+ =L (14 pr)sin wr + —3(Sin 201 — 201 C0S2017 ).
) 20
Cleatly, the function o (t)plays a damping role whence the constant ¥ having negative values.
Substituting (3.17) into equation (3.15) and linearizing it in @; gets
3a, | - 2Q|20% + ncos wr |+ 2na(24 — Q7 )sin wr + 7 ~
a5, ag Q(co 7 wr) ne(2u—-Qr)sinr +1 a0+2aey/t)
dt  8w° | - 4nw?(9ur +1)cos wr —157° wr sin 2wr — 32 cos 2wr
3 2 2 .
cosdawr +6n°(1-2c0s 2wt — 24t Sin 2 ~
— 3_a03 n wr +67° o “r r) (ao +4ae"'t)= 0.
160° | + Qn(cos3wr —36wr sin wr —11¢0s wr )—5Q2 (3.21)
Equation (3.21) can be satistied by
et
Blt)= 22000 1.6 27 | (322)
4o 4

where the constant f3, is given by
fo = a@ln? cosdar + 657 (1—2c0s 207 — 240 sin 261 )+ Qr(cos3wr — 36wz sin wr —11cosar )-5Q2 |
+ 4Q(2a)2 +7 Cosan')— 4770)(2;1 - Qr)sin r — 2772 + 877602 (9,ur +1)COS ar
+3052wr sin 2wr + 612 cos 2.

(3.23)
Insert (3.17) and (3.19) into (3.12) using (3.23) we get

To obtain the second-order complete solution we substitute from (3.1), (3.6) and (3.7) into (2.7), using
(3.24) and setting, p =1 hence we obtain Ya0,(t) = Yo + Y1 + Y, . Thus, we have

20Q c0os34(t) + 3Qusin 3¢(t) + 3277—Q cos(3¢(t) - wr)
[0

St
y(t) = 2{ao + 6" Jeosg(t) + ﬁ“";—“:i + 200 (L+ 3u7)cos(34(t)— 3er )+ Bun sin(3¢(t) - 3or )
[0
N 3277—2[cos(3¢(t)— dooe ) 20 5 (34— deor )]
w
~ | Q7(cosBe(t) - 21cos3¢(t)) +7* cos(54(t) - 8ewr )+ 36rQr sin (3¢(t) - 3wr )
ﬁ—M ::Zai +Qn(cos3wr + cosSwr Jcos54(t) + sin 5¢(t)) — 42Q 7 cos(34(t) — 3er )
“ 22152 cos(3(t) - 6r )+ 36wrn? sin (34(t) - 6 )

(3.25)
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where the function ¢(t) is given by

2
¢(t)=%&e“" B P Y (3.26)
4o’y 60’

4 Numerical Estimation
The complete periodic solution (3.25) has been illustrated graphically. Several numerical calculations have
been presented in the following some figures. In these graphs, the function Y(t)is plotted versus the

variation in the independent variablet. The vertical coordinate for the distribution in the function Y(t)
and the horizontal coordinate for the vatiations in the time t. in these graphs, the calculations are made for

the time in the interval 0 <t <10. The illustrations for the influence of the damping parameter f on the

distribution of the function Y(t) against the variable tare the subject of figures (1)-(3). In these figures
three different values for ¢ are considered with fixed the other parameters. The Yy —CUrve plotted in Fig

(1) is for the system having ¢ =0.5, ® =10, Q =15, 7 =-10,7 =90, ay =0.001. We can observe that
there exists three zeros in the Yy—curve for O0<t<10. These zeros are at the points
t; =1.31542, t, = 4.75508, t; =8.19474. 1t is observed that t, —t, =1, —t, =3.43966. Further, we can

distinguish the presence of two most upper tops and one most lower points in this curve. The lower point
is Y(3.79) =-0.928245. the first two most upper points are at Y(0.35)=0.928245 and
y(7.23) =0.928244 . The magnitude of time between these two upper points is T = 6.88.

yith

10l §=0.5

05

.ol

A L L L 1 L L L 1 L " L 1 L L L 1 L L L 1 r
I 2 4 g g \/\10
—0sf

-1.0

Figure 1: The distribution of the function Y(t) against the variation in t, for the case of = 0.5.

yit}

1.0k

0.5)

0.0l—
—05f

-1.0F

Figure 2: The distribution of the function Y(t) against the variation in t, for the case of x =1
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In Fig (2) we re-plotted the same Y —CuUrve in Fig (1) except that the damping parameter g has changed
to 4 =1. It is observed that there are five zeros points in the same t—interval . These zeros are at the
points  t; =0.7096, t, = 2.69954, t; = 4.68948, t, =6.67942, t; =8.66936. It is found that
ty -t =tz —-t, =t, —t3 =t; -1, =1.98994. The first two most upper points are at
y1(0.156) =0.9768245 and Y,(4.136) = 0.976757 . The magnitude of time between these two upper
points is T =3.98. When the damping parameter becomes =15, as illustrated in Fig (3) we have the
first two most upper points are at Y;(0.088) =1.03295 and y,(2.985) =1.03248 . So the time between

these two upper points is T = 2.897 . The compatison between these graphs shows that the magnitude of

the time T requires for occutring one period case, has decreased as uis increased. This indicates the

stabilizing influence for the parameter £ .
vit}

1.0}

0.5

.ol

—0sf

-1.0}

Figure 3: The distribution of the function Y (t) against the variation in t, for the case of =15

Fig (4) illustrates the change in the time delay parameter 7 with fixed the other parameters. Three cases are

collected in one graph for the comparison. At the case of 7 =90 we observe that the Y —CUrvVe started
at the point y(0) =0.63. When 7 becomes 7 =100 the starting point is y(0) =6.31. at the case of
7=110 the starting point is Y(0) =2.05. Two roles are observed as the time-delay is increased. A

stabilizing influence as 7 increased from7 = 90 to7 =100 and destabilizing effect as 7 changed from
7=100 to7 =110.

Fig (5) illustrates the change of the nonlinear coefficient Q on the function Y(t). Three cases for the
nonlinear coefficient Q are presented in this graph in order to estimate the influence of increasing the

nonlinear coefficient. It is observed that this increase in Q plays a destabilizing role.

with

Figure 4: The distribution of the function Y (t) versus the variation in t, for the cases of 7 =90, 100 and 110.
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wit}
1.57

1.0F
0.5]

n.0f

~0.5}

-1.0f

-15 i
Figure 5: The distribution of the function Y (t) versus the variation in t, for the cases of Q=0,10 and 20.

5  Stability Configuration and Numerical Illustration:

The approximate solution (3.26) indicates that the stability behavior depends on the sign of the parameter
¥ . The positive sign plays a growing role while the negative one plays a damping role. Eliminate Olg from
(3.20) by the help of (3.16) yields the following stability condition:

16°n[n(sin 4er —12sin 207 — 360t + 7207 c0s 207 )+ Q(sin 3wt + 3607 coswr — 23sin wr )]

2 - 272
. 3 | 4nw (9/11' +1)S|n wr + Zﬂw(Zﬂ—Qf)COSa)T +6n‘wr <0
1| —14n° ot cos 2wt + 352 sin 20t + 4Q(uw + nsin or ) '
“4.1)
where the parameter g is given by
U n’
u" =(,u+—(1+,u2')sin a)rj+—3(sin 201 — 207 C0S207 ). 4.2)
20 8w
The above stability condition (4.1) can be rearranged in terms of the Duffing coefficient Q as
aQ? +bQ+c <0, (4.3)
where the constantsa, b and Care
a=1—2*(2,ua)—77a)rcosa)r+2773in a)r)z, (4.4
3 . . 12 .
b=16nw (36601' coswr — 23sin wr +Sin 3wr)——*77(77wz' coswr — 2nsin wr — 2,ua)) 43)
H .
X [6770)7 +4uwcoswr — 77(140)1' c0s 2wz —3sin Zan')+ 4e* (1+ 9yr)sin ayr],
¢ =16n%w*[T2wr cos2wr —12(3wr +sin 207 )+ sin 4awr |
1 . 2 . (4.6)
+—|bnawr +4uwcoswr — n(l4wr cos2wr —3sin 2wr )+ 4o (L+ur)sin or | .
y7,
Stability condition (4.3) can be satisfied whence
Q; <Q<Qy, 4.7)
where Q) >Q, and
) b  vb?-4ac
=+ - " 4.8
Qr2 23 a “+8)
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The stability condition (4.7) and the transition curves (4.8) have been illustrated numerically as shown in
Figs (6), (7) and (8). The symbol “S” refers to the stable region while the symbol “U” denotes to the unstable

region (resonance region). In these figures, the graph is for the (Q —a)) plane. The distributions of the
Duffing coefficient Q on the vertical axis and the variation in the natural frequency @ lie on the horizontal

axis. To examine the effect of a specific parameter on the stability picture, we collect three different cases
for one parameter with fixed the other parameters, in each Figure.
Fig (6) deals with the distributions of the damping parameter g with fixed of both the delayed coefficient

n =15 and the parameter of delayed time 7 =9. The sold curve for the case of 1 =8, the big dash cure
denotes the case of g =6and the small dash curve refers to the case of =4 . For a specific case, the
calculations show that for the zero value of the nonlinear parameter Q , the frequency @ takes the mutual
roles of stability and instability. There is two stable regions S;and S, . Small values of @ is stabilizing than
the relatively large values. The increase of the parameter Q leads to decreasing in both S;and S, regions.
Therefore, one can say that the increase inQ plays a destabilizing role. Investigation of the graph shows
that the increase in the parameter 4 decreasing the stable region S, associated with the increase in the

stable region S, . This means that the increase in the damping parameter indicates that there is a dual role

in the stable configuration.

1000

aoo

600

400

200

35
w

Figure 6: The influence of the variation of the damping parameter (y =4, 6, 8) for a system

having 7 =15, 7=9.

1000

800

00

400

200

10 20 30 40 50 60 70
w

Figure 7: The variation of the delayed coefficient, 77 (77 =8, 10, 12) with fixed and 7 = 5.
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The examination for the influence of the coefficient of the cubic delayed term 77 on the stability plane is

shown in Fig (7). It appears that the increase in the parameter 77 increases the stable region for 0 < @ <19

and decreasing in the stable region where 19 < @ <54. this indicates that the distribution in# plays two

roles in the stability behavior. Small stabilizing effect and relatively, large destabilizing influence. Further,

notes the unstable region for @ greater than 55 has no affected with the distribution in 77.

1000

800

600

400

200

50 B0

Figure 8: The time delay distribution (2' =4.0, 4.5, 5.0), with fixed the parameters ¢z = 0.2 and77 =8.

It illustrates the behavior of the parameter7 in
Fig (8). In this graph, three different cases for the
delayed time 7 are collected. It can distinguish
three unstable regions Uy,Ujand Uj further,
there is one stable region. It appears that the
small changing in the parameter 7 from 7 =4to
7=4.5 and then to 7 =5 yields more changed
in both stable and unstable regions. This small
variation produces a decreasing in the unstable
region Ujand increasing in both Ujand Ujz

regions. This means that the increase in 7 plays a

dual role in the stability examination.
6 Conclusion

In the present work, an analytical technique for
the nonlinear dynamic problem with delayed self-
feedback is studied. The damping Duffing
oscillator with cubic nonlinear delayed term has
been investigated by the use of the homotopy-
multiple-scales method. This method can be used
as a powerful mathematical tool for studying the
stability of the solution of nonlinear oscillator
systems arising in nonlinear science and
engineering. Two solvability conditions obtained
one of them is a cubic nonlinear first-order

equation in the slow variable and the second one
is a quintic nonlinear first-order in the slower
variable. These nonlinear equations are combined
in one equation through the concept of the
homotopy method. Consequently, the amplitude
equation, in the form of Landau equation, with
the cubic and the quantic nonlinear terms is
constructed. Polar form solution is used and
enabling to discuss the linear stability around the
steady state resonance. The numerical illustration
showed that the parameters @, 1,77 and 7 plays

a dual role in the nonlinear stability.
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