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AB S T R A CT  

The current paper investigates the dynamics of the dissipative system with a cubic nonlinear time-

delayed of the type of the damping Duffing equation. A coupling between the method of the multiple 

scales and the homotopy perturbation has been utilized to study the complicated dynamic problem. 

Through this approach, a cubic nonlinear amplitude equation resulted in at the first-order of 

perturbation; meanwhile, a quintic equation appears at the second-order of perturbation. These 

equations are combined into one nonlinear quintic Landau equation. The polar form solution is used, 

and linearized stability configuration is applied to the nonlinear amplitude equation. Also, a second-

order approximate solution is achieved. The numerical illustrations showed that the damping, delay 

coefficient, and time delay play dual roles in the stability behavior. In addition, the nonlinear coefficient 

plays a destabilizing influence.  

 
Keywords: Homotopy perturbation method, multiple scales method, stability analysis, 

damping delay oscillator Duffing equation. 

 

1 Introduction 

Through the last five decades, the time delayed 

differential equations have a wide range an 

modeling of dynamical phenomena in several 

fields in science, such as; electric, pneumatic and 

hydraulic networks, neuroscience, 

optoelectronics, as well as biological or 

mechanical systems, long transmission lines, 

robotics, etc. The description of highly potential 

dynamical influences caused by delayed feedback 

or control, aging is of great interest. 

Mathematically, they introduce an important 

class of dynamical systems to be studied by 

advanced mathematical techniques, involving e.g. 

theory of bifurcation, semi-group theory or 

singular perturbations.  

The time delay generally appears in different 

control systems such as aircraft, many dynamical 

and electrodynamic systems, chemical or the 

measurements. In contrast to ordinary 

differential equations, the time-delay systems are 

of infinite dimensional in nature. The time-delay 

is, in many cases, a source of instability. The 

instability issue of control systems with delay is, 

therefore, both of theoretical and great practical 

significance. Recently, much interest has been 

depicted to investigate the dynamics of circuits 

described by delayed nonlinear equations, which 

exhibit chaotic attractors; they have found 

interesting applications in secure 

communications as given in Ref. [1]. The study of 

the dynamic behavior of such circuits is rather 

difficult. During the past two decades, more 

effort has been done in the numerical as well as 

theoretical analysis of uncertain systems with 

time-delay. Different results have been obtained 

to provide, for example, finite-dimensional 

sufficient conditions for stability/instability. 

Away from classical linear perturbation 

techniques, which depend on a small parameter, 

the homotopy perturbation is a new technique 

applied to obtain solutions regardless of the 

restriction to small parameters. 

On the other hand, delayed differential equations 

are utilized to describe wide physical phenomena 
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in engineering, physics, chemistry, biology, 

economics, and medicine, among others. 

Kruthika et al. [2] investigate the local stability of 

a gene-regulatory network and immunotherapy 

for cancer modeled in a nonlinear time-delay 

system. Many articles have appeared as collecting 

theorems homotopy methods for solutions that 

concerned with the properties of delayed systems 

[3–6]. Alomari and coworkers in [5] introduced 

an algorithm to find approximate analytical 

solutions for delay differential equations by using 

the homotopy analysis method and, also, the 

modified homotopy analysis method. They used 

their method to obtain an approximate solution 

of different linear as well as nonlinear differential 

equations with numerical predictions that agree 

well with the numerical integration solutions.  

Olvera et al. [6] applied an enhanced multistage 

HPM to solve delay differential equations having 

constant or variable coefficients. The method is 

based on a sequence of subintervals that provide 

approximate solutions. This method fails to 

investigate the stability properties. El-Dib [7, 8] 

applies a modulating method that based on the 

homotopy perturbation to study the stability 

behavior for strongly nonlinear oscillators. 

Homotopy perturbation method is a relatively 

new method [9-14]. Like other methods, it has 

theoretical and application limitations.  Some 

nonlinear equations are imposed without a linear 

variable term. The solutions of these equations 

lead to non-oscillation solutions. Homotopy 

perturbation method obtains oscillation solutions 

through a modification of the nonlinear 

equations by suggested an auxiliary term [15]. 

The procedure is given in [16] and a relatively 

comprehensive survey on the concepts, theory, 

and applications of homotopy perturbation 

method are reported through References 

[17, 18]. This method is used in a parameter-

expansion method [19, 20, and 21]. Homotopy 

perturbation method with two expanding 

parameters has been studied by He [22]. The 

parameterized homotopy perturbation method 

has been addressed by Adamu and Ogenyi [23] 

for a modification of the HPM. They introduce a 

new parameter, alpha, which can be optimal, 

determined when it is equal to unity; it turns to 

its classic version.  

The above modifications of the homotopy 

perturbation method cannot use for studying the 

stability behavior for solutions of the nonlinear 

equations. In Ref. [15], a modulation of the 

homotopy perturbation is used to investigate a 

nonlinear Mathieu equation. In these approaches, 

the arbitrary constants of the primary solution of 

homotopy equation are suggested to be 

modulated with slowness time. Therefore, one 

needs to improve the homotopy perturbation to 

allow studying the stability. Herein, we suggested 

a modification for the homotopy perturbation 

included several time-scales. In [8] El-Dib 

suggests a modified version of the homotopy 

perturbation method by absorbing the multiple 

scales method. This modification works 

especially well for nonlinear oscillators. The 

multiple scales method is a well-known method 

in the perturbation theory. It is effective for the 

weakly nonlinear oscillators. However, the 

combination of the multiple scales method with 

the homotopy perturbation method yields an 

unexpected result that used for all strongly 

nonlinear oscillators. This analysis is named as 

the homotopy-multiple-scales perturbation 

method. Nonlinear systems subjected to a 

harmonic excitation have been addressed by 

Nayfeh [24, 25]. Mathematically, the excitations 

appear either as an inhomogeneous term or as 

time-dependent coefficients in the governing 

equations. The multiple scales method is one of 

the important methods that avoid the secular 

terms in the solution, especially, at the parametric 

resonances. It leads to uniform expansions for 

the solutions [24, 25]. Therefore, it is necessary to 

develop and improve the homotopy perturbation 

to recover systems that subjected to parametric 

excitations and producing uniform analytical 

approximations. Hence, we are needed to make a 

matching between the multiple time-scales and 

the homotopy perturbation. 

Herein, we introduced a homotopy-multiple-

scales perturbation method. Three-time scales 

method is used. The second-order approximate 

periodic solution is achieved. This method allows 

finding the stability properties for a damping 

Mathieu equation that contains the periodic 

delayed parameter. 
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1.1 The Basic Idea for the Method of Homotopy-Multiple-Scales Perturbation (HMSP)  

The principles and properties of the HPM and its applicability for several kinds of differential equations 

are given in varies among researchers   [10-18], a general nonlinear equation is considered in the form 

                                                   ),()()( tfyNyL                                                                               (1.1) 

where L is an auxiliary linear operator, N is a nonlinear operator and )(tf is the inhomogeneous part. The 

nonlinear equation (1.1) has subject to the initial condition: (0)y a and (0) .y b
 The concept of the 

homotopy perturbation procedure is to construct the following one-parameter family of equations: 

                                ,1,0,0)()()()()(),( 00   tfyNuLuLyLyH                             (1.2) 

where  the embedding parameter is called a bookkeeping parameter and 0u  is the initial guess. The 

embedding parameter  changes from zero to unity. It is obvious that when 0  Eq. (2) becomes a 

linear differential equation ,0)( yL for which an exact solution can be calculated. As ,1 it becomes 

the original nonlinear one. So the increasing process of  from zero to unity is just that of Eq (1.2) to Eq 

(1.1). The homotopy perturbation method depends on the homotopy parameter   in order to expand  

                                 ....)()()()(),( 3
3

2
2

10  tytytytyty                                               (1.3) 

Often, one iteration method cannot work due to the complicated nonlinear equation. At this end, we need 

to an additional iteration method. The perturbed for the natural frequency , may be useful. Using the 

parameter   to obtain an extension for the natural frequency as 

                                                     ...2
2

10    .                                                                (1.4) 

where 0 is known as a linear natural frequency and, j  are unknowns determined from solving the 

solvability conditions that arise by removing the secularity? This secularity produced in each order of 

perturbation due to the inhomogeneity in equations describing the perturbation orders. Instead of the two 

expansions (1.3) and (1.4) one can get one expansion method plays the two roles. This can be achieved as 

follows: 

    If the limiting case of equation (2) when 0 , has the form  

                                               
 

  .0)( 2

2

2

 ty
dt

tyd
yDL                                                                  (1.5) 

Then, according to linear differential equations theory, the general solution of (1.5) is sought in terms of 

two linearly independent solutions. Assuming that, these solutions are tcos and, tsin  so that  

                                                     .sincos)( tbtaty                                                                      (1.6) 

    When ,0  one can assume that the frequency 
2  has been replaced by a function in   so that the 

linear harmonic equation (1.5) comes in the form 

                                                 ,0),(
),(

0
2

2

0
2

 


tY
dt

tYd
                                                               (1.7) 

where ),,(0 tY is an analytical function of both t and .  consequently, the solution of the harmonic 

equation (1.7) becomes 

                                                      .sincos),(0 tbtatY                                                        (1.8) 

Assuming that the frequency    has been expanded as a power series in  [22] such that 

                                                            ...,2
2

1                                                            (1.9) 

where ,...2,1; nn are unknowns’ arbitrary parameters? Employing the expansion (1.9) with (1.8) gets 

https://journals.aijr.in/index.php
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                    ....sin...cos),( 2
21

2
210  tttbtttatY                           (1.10) 

Applying Trigonometry rules yields 

                
    
     .sin...sin...cos

cos...sin...cos),(

2
21

2
21

2
21

2
210

tttattb

tttbttatY








                                     (1.11) 

If we recall the coefficients of both tcos  and tsin as 

               
     
     .,...,,...sin...cos

,,...,,...sin...cos

322
21

2
21

322
21

2
21

tttBttattb

tttAttbtta








                                  (1.12) 

So that (1.11) becomes 

                                 .sin,...,,cos,...,,),( 3232
0 ttttBttttAtY                                       (1.13) 

Clearly, both the amplitudes A  and B  are unknown periodic functions, in the slowness-time.  Expression 

(1.13) represents a primary solution of the homotopy equation (1.2) with arbitrary  . As 0
 
into (1.13), 

the result coincides with the primary solution (1.6), where aA )0( and .)0( bB   when 1 , the final 

form of the primary solution obtained as 

                                             ,sincos)(0 ttBttAty                                                                     (1.14) 

where    tytY 00 1,  . Use the definition ...,,2,1,0;  ntT n
n  where 0T represents the fasten time and

1T  refer to the slow time and 2T refer to the slower time and so on. Therefore, (1.13) becomes 

                                  .sin,...,,cos,...,,),( 032103210 TTTTBTTTTAtY                                        (1.15) 

This primary solution constructed from the fasten solution and unknown slowness solutions. These 

functions are determined such that the solution becomes uniform.  

    At this end, of the view, one can assume that for 01   , the function  ,ty has the form

),...,,,( 210 TTTY . From the point of view of the multiple scales properties [24], the first derivative and 

the second derivative for a function having multi-scales may be replaced by the following expansions:   

                    ...2
2

10  DDD
dt

d
  and ...,)2(2 20

2
1

2
10

2
02

2

 DDDDDD
dt

d
              (1.16) 

where 
n

n
T

D



 is used. At this end, the expansion (1.3) becomes 

                     ...,..),,(,..),,(,..),,(),( 2102
2

21012100  TTTyTTTyTTTyty                                (1.17) 

This represents one expansion with two perturbations, one in the independent variable t and the other in 

the dependent variable  ,ty . This expansion has been successfully used by Nayfeh [24, 25]. Therefore, 

the multiple–scales-homotopy statement can be built with zero initial guesses as 

                      .1,0,0)(,..),,(,..),,(),( 210210   tfTTTyNTTTyLyH                            (1.18) 

The approximate solution for the nonlinear problem is obtained as ,1 thus we have 

                 ...)()()()(,..),,(lim)( 3210210
1




tytytytyTTTytyapp


                                (1.19) 

2 Mathematical problem 

In this paper, we apply HPM [9-18, 8] for the solution of the delayed Duffing equation. In order to 

demonstrate how this method works, let us consider the following cubic nonlinear time-delayed Duffing 

oscillator, defined as   

                                          ,12 232

2

2

  tytyQyy
dt

dy

dt

yd
dd                                       (2.1) 

https://journals.aijr.in/index.php
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where  the coefficient of damping term,   the delayed amplitude,   the time delayed parameter,   the 

natural frequency and dy
 
denote the function of the delayed influence.      

Define the two parts of the nonlinear equation (2.1): 

                      y
dt

yd
yL 2

2

2

)(    and       .12)( 23   tytyQy
dt

dy
yN dd                       (2.2) 

Define the homotopy parameter   that monotonically increases from zero to unity.  Construct the 

homotopy state in the form: 

                                                      .]1,0;0)(),(   yNyLyH
              

                                   (2.3) 

Uses the time-scales 2,1,0;  ntT n
n  so that the function of  ,ty transformed to ),,( 210 TTTy . 

Therefore, the homotopy-multiple –scales statement for equation (2.1) can be built with zero initial guesses 

as 

                                .1,0,0),,(),,(),( 210210   TTTyNTTTyLyH                                             (2.4)    

Using Taylor expansion, one can expand the delay function    2
210 ,,  TTTyd  as 

                 ),,,(...1,, 2102
2
1

2

2
12

1
2

210 TTTyDDDTTTy dd                           (2.5) 

where 
n

n
T

D



 is used. Insert (1.16), (1.17) and (2.5) into (2.4) the homotopy-multiple –scales statement 

becomes 

       
      

     0...),,(),,(3122

),,(),,(122),(

210210
2

1120
2
1

2

210210
23

01
22

0





TTTyTTTyDyDDDD

TTTyTTTyQyyDDyDyH

dd

dd




                (2.6)                      

Expand the function ),,,( 210 TTTy  as a power series in   

                        ...),,(),,(),,(),,,( 2102
2

21012100210  TTTyTTTyTTTyTTTy  ,                         (2.7) 

where ),,( 210 TTTyn unknowns determined by are expanded the homotopy function as a power series in 

 and solving the resulting power-order equations. Also, the function ),,,( 210  TTTyd  can be 

expanded as 

        ...),,(),,(),,(),,,( 2102
2

21012100210  TTTyTTTyTTTyTTTy dddd   .       (2.8) 

3 Sequence Solutions for the Perturbed System 

In this section, we deal with obtaining the uniform three-orders-solution 10 , yy and 2y then combined 

them to find the approximate solution. To accomplish this, we substitute (2.7) and (2.8) into equation (2.6) 

the primary solution of equation (2.6) has the form 

                                   .,,),,( 00

21212100
TiTi

eTTAeTTATTTy
 

                                                       (3.1)  

Consequently, we have     

                                    iTiiTi
d eTTAeTTATTTy


 00

21212100 ,,),,( .                                  (3.2) 

The first and the second-order perturbation equations are listed below: 

  ,22 0
3

0
3
0000101

22
0 dd yyQyyDyDDyD                                                                       (3.3) 

     
.33

32222

011
3

011
2

0

2
010120

2
110102

22
0

ddddd yDyyDyy

yQyyDDDDyDDDyD








                                            (3.4)                                                                                                                                                                                                                                 

The uniform solution requires eliminating the secular terms that contain the factor 0Ti
e


. In order to find 

uniform valid expansion in this case, we must remove, the source of terms that produce secular terms in 

(3.3). The removing of these terms implies the following solvability conditions: 

https://journals.aijr.in/index.php
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                                   .0
2

3

2

2
1   AAeQ

i
AeiAAD ii  




                                                (3.5) 

The uniform solution of equation (3.3) has the form 

                   

    .
8

1
),,( 00 333333

22101
TiiTii eAeQeAeQTTTy

 


                                   (3.6) 

Consequently,           

                       .
8

1
),,( 33333333

22101
00  


 iTiiiTii

d eeAeQeeAeQTTTy
 

                      

(3.7) 

Substituting the first-order uniform solution (3.6) into the second-order problem, the solution of equation 

(3.4) with no secular terms becomes 

    

    

 

 

       
.

16

9

16

9

2
2

16

3

2
2

16

3

64

21

824

3

64

21

824

3
),,(

00

0

0

00

00

3433

4

3433

4

3333

3

3333

3

3423

4

5553

4

3423

4

5553

42102



































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                                                                                                                                                             (3.8) 

Elimination of the source of secular terms from equation (3.4) yields the following solvability condition:     
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(3.9)                 

By the help of the solvability condition (3.5) one can replace the terms of AD1
, AD2

1 and  AAD 2

1  by 

their un-derivative equivalent terms, then (3.9) becomes 
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(3.10) 

Therefore, we are in need to combine equations (3.5) and (3.10). This combination can be achieved by 

multiple equations (3.5) with  and adding to equation (3.10) multiplied with 
2  resulting the first two 

terms in the transformation of the derivative in multiple scale method setting 1 . At this stage the 

amplitude functions and the expansion of the derivative    212
2

1 ,TTADD    becomes  tA
dt

d
. Finally, 

we obtain the following equation that governed the amplitude equation: 
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(3.11) 

This is nonlinear first-order differential equation having complex coefficients of Landau form. The solution 

of this equation is used to discuss the stability of the problem. This equation can be satisfied by using the 

following transformation: 

                                                             ,)(titiettA                                                                      (3.12) 

where )(t and )(t are real functions to be determined and 
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Substituting (3.12) into (3.11) and separating real and imaginary parts we get 

             

   

   

 

 
 

.0
sin23cos363sin

2cos72362sin124sin

16

3

sin42sin32cos14

6cos22sin194

8

3

2cos22sin
8

sin1
2

5

3

3

22

22

3

3

2





















































































Q

Q

Q

dt

d

                                     (3.14) 

                 

   

 

 

 
.0

5cos11sin363cos

2sin242cos2164cos

16

3

2cos32sin15cos194

sin22cos22

8

3

4

2

22

3

2

222

22

3
























































QQ

QQ

dt

d

                               (3.15)                                                                                                                                                 

Equation (3.14) is a nonlinear first-order differential equation with real coefficients. Suppose it has a steady-

state solution 0  given by 
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                      (3.16)                                                                                                                                    

If we perturb the amplitude function )(t  around the steady-state response such that 

                                                     ),()( 10 tt                                                                                 (3.17) 

where the function )(1 t represents the small deviation from the steady-state response. Substituting (3.17) 

into (3.14), using (3.16) and linearizing it in )(1 t yields   
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This is a linear first-order equation which can be satisfied by  

                                                               ,~
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tet                                                                                (3.19) 

where 1~   to ensure the perturbation to be small and the constant  is the modulation growth rate 

which is given by 
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Clearly, the function  t1 plays a damping role whence the constant  having negative values. 

Substituting (3.17) into equation (3.15) and linearizing it in 1  gets 
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Equation (3.21) can be satisfied by   
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where the constant 0  
is given by 
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 Insert (3.17) and (3.19) into (3.12) using (3.23) we get 

                                                               .~ )(
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To obtain the second-order complete solution we substitute from (3.1), (3.6) and (3.7) into (2.7), using 

(3.24) and setting, 1  hence we obtain 210)( yyytyapp  . Thus, we have 
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(3.25)                                                                                                               
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where the function  t  is given by   
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4 Numerical Estimation  

The complete periodic solution (3.25) has been illustrated graphically. Several numerical calculations have 

been presented in the following some figures. In these graphs, the function )(ty is plotted versus the 

variation in the independent variable t . The vertical coordinate for the distribution in the function )(ty

and the horizontal coordinate for the variations in the time .t  in these graphs, the calculations are made for 

the time in the interval .100  t  The illustrations for the influence of the damping parameter  on the 

distribution of the function )(ty against the variable t are the subject of figures (1)-(3). In these figures 

three different values for  are considered with fixed the other parameters. The curvey   plotted in Fig 

(1) is for the system having .001.0,90,10,5.1,10,5.0 0   Q  We can
 
observe that 

there exists three zeros in the curvey   for .100  t  These zeros are at the points  

8.19474.4.75508,,31542.1 321  ttt It is observed that .43966.32312  tttt  Further, we can 

distinguish the presence of two most upper tops and one most lower points in this curve. The lower point 

is .928245.0)79.3( y  the first two most upper points are at 928245.0)35.0( y  and

928244.0)23.7( y . The magnitude of time between these two upper points is .88.6T  

 

 

Figure 1: The distribution of the function )(ty against the variation in ,t for the case of .5.0
 

 

 

Figure 2: The distribution of the function ( )y t against the variation in ,t for the case of 1   
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In Fig (2) we re-plotted the same curvey   in Fig (1) except that the damping parameter  has changed 

to .1  It is observed that there are five zeros points in the same .intervalt These zeros are at the 

points .8.669366.67942,4.68948,2.69954,,0.7096 54321  ttttt  It is found that  

.98994.145342312  tttttttt  The first two most upper points are at 

9768245.0)156.0(1 y  and 976757.0)136.4(2 y . The magnitude of time between these two upper 

points is 98.3T . When the damping parameter becomes 5.1 , as illustrated in Fig (3) we have the 

first two most upper points are at 03295.1)088.0(1 y  and 03248.1)985.2(2 y . So the time between 

these two upper points is 897.2T . The comparison between these graphs shows that the magnitude of 

the time T requires for occurring one period case, has decreased as  is increased. This indicates the 

stabilizing influence for the parameter . 

 

Figure 3: The distribution of the function ( )y t against the variation in ,t for the case of 1.5.   

Fig (4) illustrates the change in the time delay parameter  with fixed the other parameters. Three cases are 

collected in one graph for the comparison. At the case of 90  we observe that the curvey 
 started 

at the point 63.0)0( y . When becomes 100  the starting point is .31.6)0( y
 at the case of 

110  the starting point is .05.2)0( y  Two roles are observed as the time-delay is increased. A 

stabilizing influence as  increased from 90  to 100  and destabilizing effect as  changed from

100  to 110 .  

Fig (5) illustrates the change of the nonlinear coefficient Q on the function ).(ty  Three cases for the 

nonlinear coefficient Q are presented in this graph in order to estimate the influence of increasing the 

nonlinear coefficient. It is observed that this increase in Q plays a destabilizing role. 

 

Figure 4: The distribution of the function ( )y t versus the variation in ,t for the cases of 90, 100 and 110.   
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Figure 5: The distribution of the function ( )y t versus the variation in ,t for the cases of 0, 10 and 20.Q   

5 Stability Configuration and Numerical Illustration: 

The approximate solution (3.26) indicates that the stability behavior depends on the sign of the parameter

 . The positive sign plays a growing role while the negative one plays a damping role. Eliminate  
2

0  from 

(3.20) by the help of (3.16) yields the following stability condition:                

      

    

   
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Q

Q

Q

            
(4.1)                                                                                                                               

where the parameter 
 is given by 

                               .2cos22sin
8

sin1
2 3

2





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
 








                                   (4.2)

 

The above stability condition (4.1) can be rearranged in terms of the Duffing coefficient Q as 

                                                                ,02  cbQaQ                                                                    (4.3) 

where the constants a , b and c are 

          ,sin2cos2
12 2







a                                                                                           (4.4) 
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4sin2sin3122cos7216

22

32












c

                    (4.6)         

Stability condition (4.3) can be satisfied whence  

                                                                     ,12
  QQQ                                                                    (4.7) 

where 
  21 QQ  and  

                                                 .
2

4

2

2

2,1
a

acb

a

b
Q




                                                                      (4.8) 
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The stability condition (4.7) and the transition curves (4.8) have been illustrated numerically as shown in 

Figs (6), (7) and (8). The symbol “S” refers to the stable region while the symbol “U” denotes to the unstable 

region (resonance region). In these figures, the graph is for the  Q  plane. The distributions of the 

Duffing coefficient Q on the vertical axis and the variation in the natural frequency  lie on the horizontal 

axis. To examine the effect of a specific parameter on the stability picture, we collect three different cases 

for one parameter with fixed the other parameters, in each Figure. 

Fig (6) deals with the distributions of the damping parameter  with fixed of both the delayed coefficient 

15 and the parameter of delayed time 9 . The sold curve for the case of 8 , the big dash cure 

denotes the case of 6 and the small dash curve refers to the case of 4 . For a specific case, the 

calculations show that for the zero value of the nonlinear parameterQ , the frequency  takes the mutual 

roles of stability and instability. There is two stable regions 1S and 2S . Small values of   is stabilizing than 

the relatively large values. The increase of the parameter Q leads to decreasing in both 1S and 2S regions. 

Therefore, one can say that the increase inQ  plays a destabilizing role. Investigation of the graph shows 

that the increase in the parameter  decreasing the stable region 1S  associated with the increase in the 

stable region 2S . This means that the increase in the damping parameter indicates that there is a dual role 

in the stable configuration. 

                     

Figure 6:  The influence of the variation of the damping parameter  4, 6, 8   for a system  

having 15  , 9.   

                        

Figure 7:  The variation of the delayed coefficient,  8, 10, 12   with fixed and 5.   
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The examination for the influence of the coefficient of the cubic delayed term  on the stability plane is 

shown in Fig (7). It appears that the increase in the parameter  increases the stable region for 190   

and decreasing in the stable region where .5419   this indicates that the distribution in  plays two 

roles in the stability behavior. Small stabilizing effect and relatively, large destabilizing influence. Further, 

notes the unstable region for  greater than 55 has no affected with the distribution in .  

                     

     Figure 8: The time delay distribution  4.0, 4.5, 5.0  , with fixed the parameters 0.2  and 8  . 

 

It illustrates the behavior of the parameter  in 

Fig (8). In this graph, three different cases for the 

delayed time  are collected. It can distinguish 

three unstable regions 21,UU and 3U  further, 

there is one stable region. It appears that the 

small changing in the parameter  from 4 to 

5.4  and then to 5  yields more changed 

in both stable and unstable regions. This small 

variation produces a decreasing in the unstable 

region 1U and increasing in both 2U and 3U  

regions. This means that the increase in  plays a 

dual role in the stability examination.  

6 Conclusion 

In the present work, an analytical technique for 

the nonlinear dynamic problem with delayed self-

feedback is studied. The damping Duffing 

oscillator with cubic nonlinear delayed term has 

been investigated by the use of the homotopy-

multiple-scales method. This method can be used 

as a powerful mathematical tool for studying the 

stability of the solution of nonlinear oscillator 

systems arising in nonlinear science and 

engineering. Two solvability conditions obtained 

one of them is a cubic nonlinear first-order 

equation in the slow variable and the second one 

is a quintic nonlinear first-order in the slower 

variable. These nonlinear equations are combined 

in one equation through the concept of the 

homotopy method. Consequently, the amplitude 

equation, in the form of Landau equation, with 

the cubic and the quantic nonlinear terms is 

constructed. Polar form solution is used and 

enabling to discuss the linear stability around the 

steady state resonance. The numerical illustration 

showed that the parameters  ,, and  plays 

a dual role in the nonlinear stability. 
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