Heavy Metal Resistance by Endophytic Bacteria Isolated from Guava (Psidium Guajava) and Mango (Mangifera Indica) Leaves

Maryam Lami Riskuwa-Shehu1,*, Haruna Yahaya Ismail2, Udem Joshua Josiah Ijah3

1 Department of Microbiology, Faculty of Science, Usmanu Danfodiyo University Sokoto, Nigeria
2 Department of Microbiology, Faculty of Science, University of Maiduguri, Nigeria
3 Department of Microbiology, Faculty of Science, Federal University of Technology Minna, Nigeria

* Corresponding author email: mrliskuwa@hotmail.com

Received: 17 October 2019 / Revised: 12 November 2019 / Accepted: 15 November 2019 / Published: 16 November 2019

ABSTRACT

Heavy metal resistant bacteria are widespread in nature and their application in decontamination of polluted ecosystems is promising. In this study, ability of endophytic bacteria isolated from Psidium guajava (Guava) and Mangifera indica (Mango) for heavy metal resistance was assessed. Leaves samples form the two plants were collected and processed according to the standard laboratory practices. Heavy metals were analyzed using Atomic absorption spectrophotometer. Endophytic bacteria were isolated and identified using morphological and biochemical characteristics; heavy metal resistance was determined by plate dilution method. Heavy metal analysis revealed that the leaves samples contained considerable quantities of Manganese (Mn), Lead (Pb) and Cadmium (Cd) ranging from 1.21±1.6 mg/Kg (for Cd in Guava leaves) to 116.58±1.3 mg/Kg (for Mn in Mango leaves). A total of six bacterial species were isolated from both of the plants leaves (3 each). Guava endophytes were identified as Staphylococcus sp, Staphylococcus albus and Staphylococcus seint whereas Staphylococcus aureus, Staphylococcus xylosus and Staphylococcus intermedius were from Mango leaves. The identified isolates were tested for ability to resist heavy metals in-vitro and were capable of showing different patterns of resistance to MnCl2, PbCl2 and CdCl2. All the endophytes were highly resistant to PbCl2 followed by MnCl2 but susceptible to CdCl2. The ability of plants and bacterial endophytes understudy to tolerate or resist heavy metals is a good indication of their phytoremediation potentials and thus, should be harnessed.

Keywords: Endophytes; Cadmium; Resistance; Manganese; Lead; Bioaccumulation

1 Introduction

Since the middle of the last century, human surge for economic fortunes and technological advancements has significantly affected ecosystems as a result of waste generation leading to environmental contamination. In the recent past, environmental contamination with negative effects on humans, animals and plants has become a global problem [1]. Currently, environmental pollution is invariably on the increase worldwide due to concomitant increase in natural and anthropogenic activities resulting to devastating effects on aquatic and terrestrial environments [2-4]. Large quantities of organic and inorganic waste-products are routinely released and some of the substances exert varying harmful effects on living organisms and once they enter an environment, they become part of the biological cycle that affects all forms of life. Most of the contaminations can be attributed to industrial, municipal and military waste management practices that promote disposal rather than treatment [5]. Heavy metal contamination is one of the present environmental challenges in both developed and developing economies which is principally associated to rapid industrialization and expansion of manufacturing power among nations [6]. Heavy metals are naturally occurring metals with relatively high densities (≥ 5g/cm3), high atomic
Heavy Metal Resistance by Endophytic Bacteria Isolated from Guava (Psidium Guajava) and Mango (Mangifera Indica) Leaves

Heavy metals are toxic to all living organisms ranging from microbes to higher plants and animals. The toxicity is however severer in microorganisms due to their smaller size and direct exposure to the environment [10,18]. Elevated levels of heavy metals can result in decreased microbial community size and structure; decreased organic matter mineralization and organic matter decomposition. The situation, however, tends to favor some species due to their ability to withstand, transform the toxic metals to environment-friendly state or use them as substrates [19,20]. Thus, some microbes may play a vital role in the biogeochemical cycling of toxic heavy metals and also in cleaning up metal contamination [21,22].

A lot of studies have explored the applicability of microorganisms in ameliorating heavy metal contamination and some were found to be exciting [23,26]. This led to the development of some biotechnological processes for remediation of polluted environments tagged as bioaccumulation and biosorption [26,27]. Bioaccumulation is a process that involves the uptake and removal of environmental pollutants (both organic and inorganic) by microorganisms. Bacteria and fungi are used as key actors to detoxify, reclaim and or immobilize pollutants [28]. These technologies are believed to be more effective than the conventional processes used in removal of heavy metals from industrial waste waters including chemical precipitation, oxidation-reduction, filtration, electrochemical techniques and sophisticated separation processes using membranes; due to their cost expensiveness [23]. Biosorption on the other hand, is a process by which living and nonliving microbial cells as well as cellular products such as polysaccharides are used for heavy metal ions removal from aqueous solutions based on the principles of adsorption [29,30]. Biosorption as a bioremediation process has received increasing attention in recent years. Biosorption using the biomass of microorganisms is an effective and economic technology for the removal and recovery of heavy metal ions from waste waters. Biomass of various organisms such as bacteria, fungi, yeasts, and plants have been employed in investigating the effectiveness of biosorption process [31,32].

Despite the obvious advantages of the biotechnological processes, having the most competent and effective microbial candidates has remained a challenge to most researchers [33,34]. A number of microbes have so far been engineered genetically to meet the challenge but however, the consequences for accidental release of the modified organisms have restricted its widespread application. More so, autochthonous microbial species are considered more often due to competitive advantage of their environmental
adaptations even if modification of their genome is desired [32,35]. As a result, search for these organisms have expanded to many places like contaminated soils, water, and sediments. Various metal-resistant bacteria have been previously reported to include *Bacillus* sp. [23], *Pseudomonas* sp. [24,36], *Stenotrophomonas maltophilia*, *Exiguobacterium* sp., *Pantoea* sp., *Aeromonas* sp. [37] and many fungal [38] and algal [39] species. Ability of bacterial endophytes to accumulate heavy metals is rarely been reported as a result of more attention being devoted to soil, wastewater or sediments; even though a lot of plants are known to flourish in heavy metal contaminated environments. It was against this backdrop that this study was designed with a view to providing information on the ability of bacterial endophytes of plants growing in an environment (the vicinity of a cement factory) that was hitherto reported to be containing heavy metals in high doses; to effectively resist heavy metals.

2 Materials and Methods

2.1 Sample Collection

Samples were collected from *Mangifera indica* (Mango) and *Psidium guajavum* (Guava) plants growing around the premises of a cement factory in Sokoto area (13°21’N and 5°5’E) Northwestern Nigeria. The plants were the most abundant plants in the area and previous studies by Inuwa [40] have shown that the area contained substantial quantities of heavy metals. Leaves and leafstalks (petioles) of the plants were cut using a sharp and sterile knife from different locations. The identity of the plant samples was confirmed at the Herbarium of Biological Sciences Department, Usmanu Danfodiyo University, Sokoto (UDUS). All the reagents used in the experiment are of analytical grade.

2.2 Sample Processing

The plant materials were processed according to the methods of Khan, et al. [41] and Fan et al. [42]. One gram (1g) of plant samples were washed under running tap water, surface-sterilized by dipping successively into 70% ethanol for 1 min, 3.5% sodium hypochlorite for 3 min, and finally rinsed three times in sterilized distilled water. After surface disinfection, the leaves and stalks were homogenized with 10ml 0.85% NaCl solution and quartz sand in a surface sterilized mortar. The homogenized material was agitated for 1 hour at 30°C.

2.3 Isolation and identification of bacteria

From each of the homogenate, 1ml was serially diluted up to four folds and each dilution was separately spread on the surface of nutrient agar (NA; medium (Oxoid) in triplicate. Plates were incubated in darkness at 30°C for 7 days. Distinct colonies that developed on the media were picked at random and purified by streaking on separate freshly prepared NA plates. Pure isolates were subcultured on NA slants and stored at 4°C for further analysis. Isolates were identified based on cultural, morphological and biochemical characteristics according to the methods and schemes of Oyeleke and Manga [43] and Barrow and Feltham [44] respectively.

2.4 Detection of heavy metals in plant samples

From each of the plants’ homogenate, 1g was weighed and digested as described by Ibrahim et al. [45]. Heavy metal analysis of plant samples was carried out using Atomic Absorption Spectrophotometer (Model 210 VGP, Norwalk) using direct air acetylene flame at suitable wavelength for each metal as described by Basset et al. [46]. Standards were prepared form 1000mg/kg stock solution of each of the metals.

2.5 Determination of heavy metal resistance by isolates

Metal resistance potential of each isolate was determined by the plate dilution method as adopted by Khan et al. [41]. Stock solutions of the heavy metal salts including CdCl₂, PbCl₂ and MnCl₂ were prepared in double distilled water and added to a sterilized nutrient agar in plates at 20 mg/l concentrations. In each test, 5μl of broth culture (McFarland No. 5) was applied onto duplicate agar plates containing the appropriate heavy metal salts and incubated at 30°C for 3 days. Absence of zones of inhibition on the agar plates indicated the ability of the isolates to resist heavy metals. Since there is no defining concentration of
metal ions which can be used to distinguish metal resistant bacteria and metal sensitive bacteria, the concentration used in this study has been employed in similar studies reported on endophytic bacteria [47,48].

3 Results and Discussion

A total of six bacteria were isolated (3 each) from Guava and Mango plant samples. Morphological characteristics showed that all the isolates were Gram-positive cocci in chains and clusters. Cultural, morphological and biochemical characteristics showed that the bacterial isolates from Guava leaves were Staphylococcus sp, Staphylococcus albus and Staphylococcus seirri whereas those from Mango leaves were identified as Staphylococcus aureus, Staphylococcus xylosus and Staphylococcus intermedius. The presence of Gram-positive species in plant tissues have been reported severally and mostly attributed to plant tissue type, habitat, nature of the soil and its topography. Studies by Stepniewska and Kuźniar [49] have indicated the effects of aforesaid factors on the diversity of endophytes in different plants. Endophytic bacteria are found in virtually every plant on earth, including a wide range of agricultural and horticultural crops [50]. Occurrence of Staphylococcus species in this study is in consonance with the findings of Hung and Annapurna [51] who isolated among others Staphylococcus and Deinococcus species. Our results, however, were contrary to some other works in which, presence of Gram-negative bacteria in equal proportion [52] or in dominance [53] was reported. In a previous study [54] using Cajanus cajan and Lablab purpureus, isolated endophytes were identified to be the members of Pseudomonas, Micrococcus, Bacillus, Rhodococcus and Flavobacterium. Apparently, there is great diversity of endophytes with respect to their taxa and host plants. Hardoim et al. [55] proposed that the diversity is due to stochastic events, which are influenced by deterministic processes of colonization and microenvironment.

Result of heavy metal contents of the plant samples is presented in Table 1. Manganese, Lead and Cadmium were detected averagely in large quantities. In Guava samples, Pb was the most abundant (90.44±1.2 mg/Kg) followed by Mn (61.49±1.6 mg/Kg) and Cd (1.21±1.6 mg/Kg). In Mango samples however, Mn was most abundant (116.58±1.3 mg/Kg) while Cd (10.89±0.93 mg/Kg) was the least also. The ability of Guava and Mango plants to harbor the amount of heavy metals observed in this study is a reflection of environmental contamination and their ability to withstand stress due to heavy metals. Some plants are generally known to tolerate and even detoxify heavy metals when growing or introduced into contaminated environment. A number of studies have reported heavy metal tolerant plants including Vassilev et al. [11], Khan et al. [41] and Jan et al. [56]. Although plants need some heavy metals as essential micronutrients, their excess in soil inhibits plant growth. The heavy metal tolerating capacity of plants mainly depends on plant species or genotype and the concentration of specific heavy metals in the environment [47,48]. Moreover, occurrence of these metals in relatively high concentration is an indication of soil contamination due to heavy metal in the area which consequently led to metal accumulation.

Previous studies from the area have indicated heavy metal contamination in soil which is mainly attributed to the industrial activities. Studies by Inuwa et al. [40] showed that the levels of some heavy metals within the study region reached 0.14µg/g Cd, 83.4 µg/g Cr, 486.0µg/g Pb and 22.9µg/g Ni. Dalhat et al. [57] also reported higher Pb, Zn, Cr and Cu concentrations in soil and Lactuca sativa grown in the area as against distant compared references. These findings are further supported by the work of Ibrahim et al. [45] who observed that the finished product of the industry (cement) contains appreciable amount of heavy metal that can reach up to 6.67 ppm Mn, 7.93 ppm Ni, 2.64 ppm Cr and 2.52 ppm Cd making it highest in Ni and Cr among the tested pairs.

Table 1: Heavy metal content of plant samples

<table>
<thead>
<tr>
<th>Heavy metal</th>
<th>Guava Leaves (mg/kg)</th>
<th>Mango Leaves (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>61.49±1.6</td>
<td>116.58±1.3</td>
</tr>
<tr>
<td>Pb</td>
<td>90.44±1.2</td>
<td>21.16±1.6</td>
</tr>
<tr>
<td>Cd</td>
<td>1.21±1.6</td>
<td>10.89±0.93</td>
</tr>
</tbody>
</table>

ISSN: 2456-7132
Available online at Journals.aijr.in
The differences observed between our study and that of Ibrahim et al. [45] was as a result of the plants ability to accumulate metals as compared to soil samples which are subjected to washing by running water or leaching; thereby decreasing metal concentration on the topmost soils. This agrees with the findings of Abdullahi et al. [58] who observed that top soils from the area had better chemical properties than the deep soil. The ability of the plants to flourish in the area is a good indication of its phyto remediation potentials. This is due to the fact that only heavy metal tolerant or accumulators are known to survive in high doses of toxic metals. According to Vassilev et al. [11] metal accumulating-plants are usually found on metalliferous soils and other metal rich soils. This ability may be a function of many factors among which genetic makeup and soil characteristics play a major role [59]. In addition, Ernst [60] expressed that natural exposure of plants to surplus of various metals has driven the evolution of metal hyperaccumulation as well as plant resistance to heavy metals.

Results for resistance of heavy metals by the isolates are presented in Tables 2 & 3. Among Guava isolates (Table 2), Streptococcus sp. was observed to be highly resistant to MnCl2 and PbCl2 as compared to CdCl2 whereas S. albus and S. seiuri were most resistant to PbCl2 but less to CdCl2. Similarly, isolates from Mango plants were most resistant to Pb followed by Mn and Cd; with resistance to Pb been comparable only to that of the control (Table 3). These results have shown that the bacterial isolates were capable of resisting the effects of heavy metals on their cells and as such able to live in association with heavy metal-resistant plants. This might be due to their ability to adapt to different concentrations of heavy metals and become metal resistant. This is in accordance with the work of Goris et al. [61] who isolated thirty-one heavy metal resistant bacteria from industrial biotopes with considerable variations in activity. It might also be due to their inherent ability or presence of plasmids as opposed to selective pressure. Gupta et al. [62] have made similar assertions and Zolgharnein et al. [63] have reported that, the occurrence of plasmids in heavy metal resistant bacteria is more than that found in common bacteria. Resistance of endophytic Staphylococcus sp to Pb and Cd has been reported by Khan et al. [47] and thus supports our findings. Among heavy metals Zn, Cu and Pb are said to be less toxic, whereas Cd and Cr are highly toxic to microbes. This explains the kind of variation observed among the isolates with regards to heavy metal resistance in which Cd was the least to be resisted by isolates in this study. Heavy metals are arranged in the order of resistance Pb>Cu>Zn>Cd>Cr, although it might be influenced by adaptation of the organism to a stressed environment. Previous studies by Raja et al. [64] have made similar observations.

Table 2: Resistance of Guava isolates to heavy metals

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Control</th>
<th>MnCl₂</th>
<th>PbCl₂</th>
<th>CdCl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus sp.</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Staphylococcus albus</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Staphylococcus seiuri</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 4: Resistance of Mango isolates to heavy metals

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Control</th>
<th>MnCl₂</th>
<th>PbCl₂</th>
<th>CdCl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Staphylococcus xylose</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Staphylococcus intermedius</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
</tr>
</tbody>
</table>

4 Conclusion

In this study, it was evident that the plants under studies were harboring endophytic bacteria in their leaf’s tissues. The bacterial species were all Gram positive of the genera Staphylococcus and Streptococcus. The plants’ leaves were observed to contain appreciable amount of Mn, Pb and Cd. The bacterial species were resistant to all the heavy metals tested at various levels of resistance.
Therefore, the bacterial isolates and the corresponding plants are heavy metal resistant and thus, could potentially play a significant role in phytoremediation of heavy metal polluted soils.

5 Declarations

5.1 Acknowledgements

We acknowledge the support of laboratory staff in the Microbiology Research Laboratory, UDUS.

5.2 Competing Interests

The authors declare that there is no conflict of interest exist in this article.

How to Cite this Article:

References

[56] R. Jan, Khan, M.A.; Asaf, S.; Lubna; Lee, I.-J.; K. M. Kim, “Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of

