Radiolabeled Nanoparticles in Nuclear Oncology

  • Evangelia Alexandra Salvanou Radiochemical Studies Laboratory, INRASTES, NCSR "Demokritos"
  • Penelope Bouziotis National Center for Scientific Research "Demokritos" http://orcid.org/0000-0001-6778-2201
  • Charalampos Tsoukalas Radiochemical Studies Laboratory, Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Athens, Greece

Abstract

During recent years, a plethora of pioneering radiolabeled nanoparticles have grown to be an integral part of nuclear medicine as theranostic tools. Herein, we focus on the most representative examples of nanoparticles of the past decade, which have been investigated in conjunction with radioisotopes aiming to serve as drug delivery or imaging agents. The present review highlights the key attributes of each nanosystem and the following classification of radiolabeled nanovehicles is based on increasing mass number (A) of radioisotopic elements.

Keywords: diagnosis, MRI, nanooncology, nuclear imaging, PET, radioisotope, SPECT, theranostics, Cancer therapy, Radiolabeled Nanoparticles

Downloads

Download data is not yet available.

References

[1]          World Health Organization, “The top 10 causes of death,” www.who.int/mediacentre/factsheets/fs310/en/, 2017. .


[2]          J. Ferlay et al., “GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11,” Lyon, France, 2013.


[3]          R. Sharma et al., “Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging,” Nanoscale, vol. 5, no. 16, pp. 7476–7483, 2013.


[4]          M. Jauregui-osoro, P. A. Williamson, A. Glaria, K. Sunassee, P. Charoephun, and M. A. Green, “Biocompatible inorganic nanoparticles for [18F]-fluoride binding with applications in PET imaging,” Dalt. Trans., vol. 40, no. 23, pp. 6226–6237, 2011.


[5]          S. Guerrero et al., “Synthesis and In Vivo Evaluation of the Biodistribution of a 18 F- Labeled Conjugate Gold-Nanoparticle-Peptide with Potential Biomedical Application,” Bioconjug. Chem., vol. 23, pp. 399–408, 2012.


[6]          Z. Sun et al., “Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging,” Nanoscale, vol. 8, no. 47, pp. 19644–19653, 2016.


[7]          F. Emmetiere et al., “F-labeled-Bioorthogonal Liposomes for In Vivo Targeting,” Bioconjug. Chem., vol. 24, no. 11, pp. 1784–1789, 2014.


[8]          P. P. Di Mauro, V. Gómez-Vallejo, Z. Baz Maldonado, J. Llop Roig, and S. Borrós, “Novel 18F Labeling Strategy for Polyester-Based NPs for in Vivo PET-CT Imaging,” Bioconjug. Chem., vol. 26, no. 3, pp. 582–592, 2015.


[9]          S. Berke et al., “18F-Radiolabeling and in Vivo Analysis of SiFA-Derivatized Polymeric Core-Shell Nanoparticles,” Bioconjug. Chem., vol. 29, no. 1, pp. 89–95, 2018.


[10]        S. Lee et al., “Copper-64 labeled liposomes for imaging bone marrow,” Nucl. Med. Biol., vol. 43, no. 12, pp. 781–787, 2016.


[11]        H. Lee et al., “A gradient-loadable 64 Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography,” Nanomedicine Nanotechnology, Biol. Med., vol. 11, no. 1, pp. 155–165, 2015.


[12]        Y. Du et al., “Nuclear and Fluorescent Labeled PD-1-Liposome-DOX-64Cu/IRDye800CW Allows Improved Breast Tumor Targeted Imaging and Therapy,” Mol. Pharm., vol. 14, no. 11, pp. 3978–3986, 2017.


[13]        P. Wong et al., “PET imaging of64Cu-DOTA-scFv-anti-PSMA lipid nanoparticles (LNPs): Enhanced tumor targeting over anti-PSMA scFv or untargeted LNPs,” Nucl. Med. Biol., vol. 47, pp. 62–68, 2017.


[14]        B. Pang et al., “64Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment,” ACS Nano, vol. 10, no. 3, pp. 3121–3131, 2016.


[15]        A. F. Frellsen et al., “Mouse Positron Emission Tomography Study of the Biodistribution of Gold Nanoparticles with Different Surface Coatings Using Embedded Copper-64,” ACS Nano, vol. 10, pp. 9887–9898, 2016.


[16]        X. Tong et al., “Size dependent kinetics of gold nanorods in EPR mediated tumor delivery,” Theranostics, vol. 6, no. 12, pp. 2039–2051, 2016.


[17]        Y. Zhao et al., “Gold Nanoclusters-Doped With 64Cu for CXCR4 Positron Emission Tomography Imaging of Breast Cancer and Metastasis,” ACS Nano, vol. 10, no. 6, pp. 5959–5970, 2016.


[18]        D. Lee et al., “Facile Method To Radiolabel Glycol Chitosan Nanoparticles with 64 Cu via Copper-Free Click Chemistry for MicroPET Imaging,” Mol. Pharm., vol. 10, pp. 2190–2198, 2013.


[19]        T. M. Shaffer, S. Harmsen, E. Khwaja, M. F. Kircher, C. M. Drain, and J. Grimm, “Stable Radiolabeling of Sulfur-Functionalized Silica Nanoparticles with Copper-64,” Nano Lett., vol. 16, pp. 5601–5604, 2016.


[20]        R. Torres Martin de Rosales et al., “Synthesis of 64 Cu II -Bis(dithiocarbamatebisphosphonate) and Its Conjugation with Superparamagnetic Iron Oxide Nanoparticles: In Vivo Evaluation as Dual-Modality PET-MRI Agent,” Angew. Chemie Int. Ed., vol. 50, no. 24, pp. 5509–5513, 2011.


[21]        X. Yang et al., “cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging,” Biomaterials, vol. 32, pp. 4151–4160, 2011.


[22]        D. Yang et al., “In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide,” Biomaterials, vol. 104, pp. 361–371, 2016.


[23]        Y. Zhan et al., “Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging,” ACS Appl. Mater. Interfaces, vol. 9, no. 44, pp. 38304–38312, 2017.


[24]        C. Truillet et al., “Ultrasmall particles for Gd-MRI and68Ga-PET dual imaging,” Contrast Media Mol. Imaging, vol. 10, no. 4, pp. 309–319, 2015.


[25]        P. Bouziotis et al., “Ga-radiolabeled AGuIX nanoparticles as dual-modality imaging agents for PET / MRI- guided radiation therapy,” Nanomedicine, vol. 12, no. 13, pp. 1561–1574, 2017.


[26]        J. Frigell, I. García, V. Gómez-Vallejo, and J. Llop, “Ga-Labeled Gold Glyconanoparticles for Exploring Blood − Brain Barrier Permeability: Preparation, Biodistribution Studies, and Improved Brain Uptake via Neuropeptide Conjugation,” J. Am. Chem. Soc., vol. 136, pp. 449–457, 2014.


[27]        B. P. Burke et al., “Final step gallium-68 radiolabelling of silica-coated iron oxide nanorods as potential PET/MR multimodal imaging agents,” Faraday Discuss., vol. 175, pp. 59–71, 2014.


[28]        S. Moon et al., “Development of a complementary PET / MR dual-modal imaging probe for targeting prostate-specific membrane antigen ( PSMA ),” Nanomedicine Nanotechnology, Biol. Med., vol. 12, no. 4, pp. 871–879, 2016.


[29]        B. Y. Yang, S.-H. Moon, S. R. Seelam, M. J. Jeon, and Y.-S. Lee, “Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging,” Nanomedicine, vol. 10, no. 12, pp. 1899–1910, 2015.


[30]        Y. Fazaeli, R. Rahighi, A. Tayyebi, and S. Feizi, “Synthesis , characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging,” Radiochim. Acta, vol. aop, pp. 1–9, 2016.


[31]        A. Polyak et al., “Journal of Pharmaceutical and Biomedical Analysis Preparation and 68 Ga-radiolabeling of porous zirconia nanoparticle platform for PET / CT-imaging guided drug delivery,” J. Pharm. Biomed. Anal., vol. 137, pp. 146–150, 2017.


[32]        M. Jennewein et al., “A new method for radiochemical separation of arsenic from irradiated germanium oxide,” Appl. Radiat. Isot., vol. 63, no. 3, pp. 343–351, 2005.


[33]        F. Chen et al., “Chelator-Free Synthesis of a Dual-Modality PET / MRI Agent ** Angewandte,” Angew. Chemie - Int. Ed., vol. 125, pp. 13561–13565, 2013.


[34]        L. Karmani et al., “Antibody-functionalized nanoparticles for imaging cancer : influence of conjugation to gold nanoparticles on the biodistribution of 89 Zr-labeled cetuximab in mice,” Contrast Media Mol. Imaging, vol. 8, no. February, pp. 402–408, 2013.


[35]        E. Boros, A. M. Bowen, L. Josephson, and J. P. Holland, “Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles,” Chem. Sci., vol. 6, pp. 225–236, 2015.


[36]        D. L. J. Thorek et al., “Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle,” Nat. Commun., vol. 5, p. 3097, 2014.


[37]        L. Cheng et al., “Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging,” ACS Nano, vol. 11, no. 12, pp. 12193–12201, 2017.


[38]        D. Chen et al., “In Vivo Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials,” ACS Nano, vol. 11, no. 4, pp. 4315–4327, 2017.


[39]        F. Chen et al., “In Vivo Integrity and Biological Fate Mesoporous Silica Nanoparticles,” ACS Nano, vol. 9, no. 8, pp. 7950–7959, 2015.


[40]        N. Li, Z. Yu, T. T. Pham, and E. Al, “A generic 89 Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography,” Int. J. Nanomedicine, vol. 12, pp. 3281–3294, 2017.


[41]        C. Truillet, E. Thomas, F. Lux, L. T. Huynh, O. Tillement, and M. J. Evans, “Synthesis and characterization of 89Zr-labeled ultrasmall nanoparticles Synthesis and characterization of 89 Zr-labeled ultrasmall nanoparticles,” Mol. Pharm., vol. 13, no. 7, pp. 2596–2601, 2016.


[42]        H. Groult et al., “Parallel multifunctionalization of nanoparticles: A one-step modular approach for in vivo imaging,” Bioconjug. Chem., vol. 26, pp. 153–160, 2015.


[43]        M. Radovic, M. P. Calatayud, G. F. Goya, M. R. Ibarra, and B. Antic, “Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy,” J. Biomed. Mater. Res., vol. 103, no. 1, pp. 126–134, 2015.


[44]        M. Radovic et al., “Development and evaluation of 90 Y-labeled albumin microspheres loaded with magnetite nanoparticles for possible applications in cancer therapy,” J. Mater. Chem., vol. 22, pp. 24017–24025, 2012.


[45]        A. Kursad, A. Yenilmez, and H. Eroglu, “Evaluation of radiolabeled curcumin-loaded solid lipid nanoparticles usage as an imaging agent in liver-spleen scintigraphy,” Mater. Sci. Eng. C, vol. 75, pp. 663–670, 2017.


[46]        E. Ucar et al., “Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system,” Appl. Radiat. Isot., vol. 119, pp. 72–79, 2017.


[47]        K. K. Halder, B. Mandal, M. C. Debnath, H. Bera, L. K. Ghosh, and B. K. Gupta, “Chloramphenicol-incorporated poly lactide- co -glycolide ( PLGA ) nanoparticles : Formulation , characterization , technetium-99m labeling and biodistribution studies,” J. Drug Target., vol. 16, no. 4, pp. 311–320, 2008.


[48]        S. Subramanian, P. Dandekar, R. Jain, U. Pandey, and G. Samuel, “Nanoparticles as an Alternative,” Cancer Biotherary and Radioplarmaceuticals, vol. 25, no. 6, pp. 637–644, 2010.


[49]        S. Subramanian, U. Pandey, D. Gugulothu, V. Patravale, and G. Samuel, “Modification of PLGA Nanoparticles for Improved Properties as a 99m Tc-Labeled Agent in Sentinel Lymph Node Detection,” Cancer Biotherary and Radioplarmaceuticals, vol. 28, no. 8, pp. 598–606, 2013.


[50]        B. F. De Carvalho Patricio, M. De Souza Albernaz, M. A. Sarcinelli, S. M. De Carvalho, R. Santos-Oliveira, and G. Weissmüller, “Development of novel nanoparticle for bone cancer,” J. Biomed. Nanotechnol., vol. 10, no. 7, pp. 1242–1248, 2014.


[51]        B. E. Ocampo-garcía et al., “Tc-labelled gold nanoparticles capped with HYNIC-peptide / mannose for sentinel lymph node detection ☆,” Nucl. Med. Biol., vol. 38, no. 1, pp. 1–11, 2011.


[52]        A. N. Mendoza-sánchez et al., “Lys 3 -Bombesin Conjugated to 99m Tc-Labelled Gold Nanoparticles for In Vivo Gastrin Releasing Peptide-Receptor Imaging,” vol. 6, no. 4, pp. 375–384, 2010.


[53]        G. Ferro-flores, E. Morales-avila, and F. De Marı, “Kit for preparation of multimeric receptor-specific Tc-radiopharmaceuticals based on gold nanoparticles Blanca Ocampo-Garcı,” 2011.


[54]        L. Zhao et al., “99mTc-labelled multifunctional polyethylenimine-entrapped gold nanoparticles for dual mode SPECT and CT imaging,” Artif. Cells, Nanomedicine Biotechnol., vol. 1401, 2018.


[55]        T. M. Imaging, M. Botnar, P. J. Blower, G. Frodsham, P. A. Williamson, and N. Gaddum, “Terms of Use Bisphosphonate-Anchored PEGylation and Radiolabeling of Superparamagnetic Iron Oxide : Long-Circulating Nanoparticles for in Vivo Multimodal,” ACS Nano, vol. 7, no. 1, pp. 500–512, 2013.


[56]        I. J. Lee et al., “Image-based analysis of tumor localization after intra-arterial delivery of technetium-99m-labeled SPIO using SPECT/CT and MRI,” Mol. Imaging, vol. 16, pp. 1–9, 2017.


[57]        I. Tsiapa et al., “99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment,” J. Colloid Interface Sci., vol. 433, pp. 163–175, 2014.


[58]        A. F. O, M. Felber, and R. Alberto, “99mTc radiolabelling of Fe3O4-Au core-shell and Au-Fe3O4 dumbell-like nanoparticles,” Nanoscale, vol. 7, pp. 6653–6660, 2015.


[59]        H. Yamaguchi, M. Tsuchimochi, K. Hayama, and T. Kawase, “Dual-Labeled Near-Infrared / 99m Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells,” Int. J. Mol. Sci., vol. 17, p. 1086, 2016.


[60]        A. Luís et al., “Synthesis , characterization , and biodistribution studies of 99m Tc-labeled SBA-16 mesoporous silica nanoparticles,” Mater. Sci. Eng. C, vol. 56, pp. 181–188, 2015.


[61]        H. Gao et al., “99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery,” Nanoscale, vol. 8, no. 47, pp. 19573–19580, 2016.


[62]        L. Pascual et al., “MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications,” Nanomedicine Nanotechnology, Biol. Med., vol. 13, pp. 2495–2505, 2017.


[63]        G. Fragogeorgi, E.A., Savina, I.N., Tsotakos, T., Efthimiadou, E., Xanthopoulos, S., Palamaris, L., Psimadas, D., Bouziotis, P., Kordas, G., Mikhalovsky, S., Alavijeh, M., and Loudos, “Comparative in vitro stability and scintigraphic imaging for trafficking and tumor targeting of a directly and a novel 99mTc (I)(CO)3 labeled liposome.,” Int. J. Pharm., vol. 465(1-2), no. I, pp. 333–346, 2014.


[64]        A. Polyák, I. Hajdu, M. Bodnár, G. Trencsényi, and Z. Pöstényi, “Tc-labelled nanosystem as tumour imaging agent for SPECT and SPECT / CT modalities,” Int. J. Pharm., vol. 449, pp. 10–17, 2013.


[65]        Y. Zhang, Y. Sun, X. Xu, H. Zhu, L. Huang, and X. Zhang, “Bioorganic & Medicinal Chemistry Letters Radiosynthesis and micro-SPECT imaging of poly ( amido ) -amine folic acid conjugate Tc-dendrimer,” Bioorg. Med. Chem. Lett., vol. 20, no. 3, pp. 927–931, 2010.


[66]        X. Xu et al., “Bioorganic & Medicinal Chemistry Radiosynthesis , biodistribution and micro-SPECT imaging study of dendrimer – avidin conjugate,” Bioorg. Med. Chem., vol. 19, no. 5, pp. 1643–1648, 2011.


[67]        X. Li et al., “99mTc-Labeled Multifunctional Low Generation Dendrimer-Entrapped Gold Nanoparticles for Targeted SPECT / CT Dual-Mode Imaging of Tumors Tc-Labeled Multifunctional Low Generation Dendrimer-Entrapped Gold Nanoparticles for Targeted SPECT / CT Dual-Mode Imag,” ACS Appl. Mater. Interfaces, vol. 8, no. 31, pp. 19883–19891, 2016.


[68]        X. Xu et al., “Targeted tumor SPECT/CT dual mode imaging using multifunctional RGD-modified low generation dendrimer-entrapped gold nanoparticles,” Biomater. Sci., vol. 5, no. 12, 2017.


[69]        A. C. Laan, C. Santini, L. Jennings, M. De Jong, M. R. Bernsen, and A. G. Denkova, “Radiolabeling polymeric micelles for in vivo evaluation : a novel , fast , and facile method,” EJNMMI Res., vol. 6, p. 12, 2016.


[70]        A. Arranja et al., “SPECT/CT Imaging of Pluronic Nanocarriers with Varying Poly(ethylene oxide) Block Length and Aggregation State,” Mol. Pharm., vol. 13, pp. 1158–1165, 2016.


[71]        Q. K. T. Ng et al., “Biomaterials Indium-111 labeled gold nanoparticles for in-vivo molecular targeting,” Biomaterials, vol. 35, pp. 7050–7057, 2014.


[72]        Z. Cai et al., “In-labeled trastuzumab-modi fi ed gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection,” Nucl. Med. Biol., vol. 43, no. 12, pp. 818–826, 2016.


[73]        L. Song, N. Falzone, and K. A. Vallis, “EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer,” Int. J. Radiat. Biol., vol. 92, no. 11, pp. 716–723, 2016.


[74]        R. Misri, D. Meier, A. C. Yung, P. Kozlowski, and U. O. Häfeli, “Development and evaluation of a dual-modality ( MRI / SPECT ) molecular imaging bioprobe,” Nanomedicine Nanotechnology, Biol. Med., vol. 8, pp. 1007–1016, 2012.


[75]        H. Zolata, F. Abbasi, and H. Afarideh, “Synthesis , characterization and theranostic evaluation of Indium-111 labeled multifunctional superparamagnetic iron oxide nanoparticles,” Nucl. Med. Biol., vol. 42, pp. 164–170, 2015.


[76]        J. Bai et al., “Triple-modal imaging of magnetically-targeted nanocapsules in solid tumours in vivo,” Theranostics, vol. 6, no. 3, pp. 342–356, 2016.


[77]        S. R. Banerjee, C. A. Foss, A. Horhota, K. A. Mcdonnell, S. Zale, and M. G. Pomper, “An 111 In- and IRDye800CW-Labeled PLA-PEG Nanoparticle for Imaging Prostate-specific membrane antigen-Expressing Tissues,” Biomacromolecules, vol. 18, no. 1, pp. 201–209, 2017.


[78]        A. Chrastina and J. E. Schnitzer, “Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging,” Int. J. Nanomedicine, vol. 5, pp. 653–659, 2010.


[79]        N. S. Farrag, H. A. El-Sabagh, A. M. Al-mahallawi, A. M. Amin, A. AbdEl-Bary, and W. Mamdouh, “Comparative Study on Radiolabeling and Biodistribution of Core-shell Silver/polymeric Nanoparticles-based Theranostics for Tumor Targeting,” Int. J. Pharm., vol. 521, no. 1–2, pp. 123–133, 2017.


[80]        S. Deng, W. Zhang, B. Zhang, and E. Al, “Radiolabeled cyclic arginine-glycine-aspartic ( RGD ) - conjugated iron oxide nanoparticles as single-photon emission computed tomography ( SPECT ) and magnetic resonance imaging ( MRI ) dual-modality agents for imaging of breast cancer,” J. Nanoparticle Res., vol. 17, p. 19, 2015.


[81]        J. Wang et al., “MR / SPECT Imaging Guided Photothermal Therapy of Tumor-Targeting Fe@Fe3O4 Nanoparticles in Vivo with Low Mononuclear Phagocyte Uptake,” ACS Appl Mater Interfaces, vol. 8, no. 31, pp. 19872–19882, 2016.


[82]        N. Ignjatovic, S. V. Djuric, Ž. Mitic, D. Jankovic, and D. Uskokovic, “Investigating an organ-targeting platform based on hydroxyapatite nanoparticles using a novel in situ method of radioactive 125Iodine labeling,” Mater. Sci. Eng. C, vol. 43, pp. 439–446, 2014.


[83]        R. Clanton, A. Gonzalez, S. Shankar, and G. Akabani, “Rapid synthesis of125I integrated gold nanoparticles for use in combined neoplasm imaging and targeted radionuclide therapy,” Appl. Radiat. Isot., vol. 131, pp. 49–57, 2018.


[84]        L. X. Liu et al., “An Integrative Folate-Based Metal Complex Nanotube as a Potent Antitumor Nanomedicine as Well as an Efficient Tumor-Targeted Drug Carrier,” Bioconjug. Chem., vol. 27, no. 12, pp. 2863–2873, 2016.


[85]        W. Li, Z. Liu, C. Li, N. Li, L. Fang, and J. Chang, “Radionuclide therapy using 131 I ‑ labeled anti ‑ epidermal growth factor receptor ‑ targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression,” J. Cancer Res. Clin. Oncol., vol. 142, no. 3, pp. 619–632, 2016.


[86]        H. Ming et al., “Antitumor Effect of Nanoparticle 131 I-Labeled Arginine-Glycine-Aspartate–Bovine Serum Albumin–Polycaprolactone in Lung Cancer,” Am. J. Roentgenol., vol. 208, pp. 1–11, 2017.


[87]        Y. Cheng et al., “I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas,” Nanomedicine, vol. 11, no. 10, pp. 1253–1266, 2016.


[88]        X. Song, C. Liang, L. Feng, K. Yang, and Z. Liu, “Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy,” Biomater. Sci., vol. 5, no. 9, pp. 1828–1835, 2017.


[89]        Y. Sun et al., “Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking,” Biomaterials, vol. 34, no. 9, pp. 2289–2295, 2013.


[90]        T. Cao et al., “Biodistribution of sub-10nm PEG-modified radioactive/upconversion nanoparticles,” Biomaterials, vol. 34, pp. 7127–7134, 2013.


[91]        Y. Liu et al., “Long-term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods,” Biomaterials, vol. 35, no. 10, pp. 3348–3355, 2014.


[92]        A. Gholami and S. H. Mousavie Anijdan, “Development of 153 Sm-DTPA-SPION as a theranostic dual contrast agents in SPECT/MRI,” Iran. J. Basic Med. Sci., vol. 19, pp. 1056–1062, 2016.


[93]        V. Mandiwana, L. Kalombo, K. Venter, M. Sathekge, A. Grobler, and J. R. Zeevaart, “Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles,” J. Nanoparticle Res., vol. 17, p. 375, 2015.


[94]        S. Nosrati, S. Shanehsazzadeh, H. Yousefnia, A. Gholami, and C. Gru, “Biodistribution evaluation of 166 Ho – DTPA – SPION in normal rats,” pp. 1559–1566, 2016.


[95]        A. J. Di Pasqua, M. L. Miller, X. Lu, L. Peng, and M. Jay, “Tumor accumulation of neutron-activatable holmium-containing mesoporous silica nanoparticles in an orthotopic non-small cell lung cancer mouse model,” Inorganica Chim. Acta, vol. 393, pp. 334–336, 2012.


[96]        J. Kim, Z. X. Luo, Y. Wu, X. Lu, and M. Jay, “In-situ formation of holmium oxide in pores of Mesoporous Carbon Nanoparticles as substrates for neutron-activatable radiotherapeutics,” Carbon N. Y., vol. 117, pp. 92–99, 2017.


[97]        W. Bult et al., “Holmium nanoparticles: Preparation and in vitro characterization of a new device for radioablation of solid malignancies,” Pharm. Res., vol. 27, no. 10, pp. 2205–2212, 2010.


[98]        A. Vilchis-Juárez, G. Ferro-Flores, C. Santos-Cuevas, E. Morales-Avila, and B. Ocampo-García, “Molecular Targeting Radiotherapy with Cyclo-RGDfK ( C ) Peptides Conjugated to 177 Lu-Labeled Gold Nanoparticles in Tumor-Bearing Mice,” J. Biomed. Nanotechnol., vol. 10, no. 3, pp. 393–404, 2014.


[99]        S. Yook et al., “Stability and Biodistribution of Thiol-Functionalized and 177Lu- Labeled Metal Chelating Polymers ( MCP ) Bound to Gold Nanoparticles Stability and Biodistribution of Thiol-Functionalized and Lu-Labeled Metal Chelating Polymers ( MCP ) Bound to Gold Nanop,” Biomacromolecules, vol. 17, no. 4, pp. 1292–1302, 2016.


[100]      S. Yook, Z. Cai, Y. Lu, M. A. Winnik, and J. Pignol, “Intratumorally Injected Lu-Labeled Gold Nanoparticles – Gold Nanoseed Brachytherapy with Application for Neo-Adjuvant Treatment of Locally Advanced Breast Cancer ( LABC ),” no. 416, pp. 1–32, 2016.


[101]      Z. Cai et al., “Local Radiation Treatment of HER2-Positive Breast Cancer Using Trastuzumab-Modified Gold Nanoparticles Labeled with 177Lu,” Pharm. Res., vol. 34, pp. 579–590, 2017.


[102]      A. González-Ruíz et al., “Synthesis and in vitro evaluation of an antiangiogenic cancer-specific dual-targeting177Lu-Au-nanoradiopharmaceutical,” J. Radioanal. Nucl. Chem., vol. 314, pp. 1337–1345, 2017.


[103]      H. Mendoza-Nava et al., “Fluorescent, plasmonic, and radiotherapeutic properties of the177Lu-dendrimer-AuNP-folate-bombesin nanoprobe located inside cancer cells,” Mol. Imaging, vol. 16, pp. 1–10, 2017.


[104]      J. You et al., “Chemoradiation therapy using cyclopamine-loaded liquid-lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles,” J. Control. Release, vol. 202, pp. 40–48, 2015.


[105]      A. B. Satterlee, H. Yuan, and L. Huang, “A radio-theranostic nanoparticle with high specific drug loading for cancer therapy and imaging,” J. Control. Release, vol. 217, pp. 170–182, 2015.


[106]      G. Arora, J. Shukla, S. Ghosh, S. K. Maulik, A. Malhotra, and G. Bandopadhyaya, “Plga nanoparticles for peptide receptor radionuclide therapy of neuroendocrine tumors: A novel approach towards reduction of renal radiation dose,” PLoS One, vol. 7, no. 3, pp. 1–11, 2012.


[107]      M. D. Shultz et al., “Encapsulation of a radiolabeled cluster inside a fullerene cage,177LuxLu(3- x)N@C80: An interleukin-13-conjugated radiolabeled metallofullerene platform,” J. Am. Chem. Soc., vol. 132, pp. 4980–4981, 2010.


[108]      M. Chen et al., “MicroSPECT/CT Imaging and Pharmacokinetics of 188 Re-(DXR)-liposome in Human Colorectal Adenocarcinoma-bearing Mice,” Anticancer Res., vol. 30, pp. 65–72, 2010.


[109]      F.-Y. J. Huang et al., “Imaging, Autoradiography, and Biodistribution of 188 Re-Labeled PEGylated Nanoliposome in Orthotopic Glioma Bearing Rat Model,” Cancer Biother. Radiopharm., vol. 26, no. 6, pp. 717–725, 2011.


[110]      W. T. Phillips et al., “Rhenium-186 liposomes as convection- enhanced nanoparticle brachytherapy for treatment of glioblastoma,” Neuro. Oncol., vol. 14, no. 4, pp. 416–425, 2012.


[111]      B. Azadbakht, H. Afarideh, M. Ghannadi-Maragheh, A. Bahrami-Samani, and M. Asgari, “Preparation and evaluation of APTES-PEG coated iron oxide nanoparticles conjugated to rhenium-188 labeled rituximab,” Nucl. Med. Biol., vol. 48, pp. 26–30, 2017.


[112]      Y. Yang et al., “Rational Design of GO-Modified Fe3O4/SiO2Nanoparticles with Combined Rhenium-188 and Gambogic Acid for Magnetic Target Therapy,” ACS Appl. Mater. Interfaces, vol. 9, no. 34, pp. 28195–28208, 2017.


[113]      M. K. Khan, L. D. Minc, S. S. Nigavekar, M. S. T. Kariapper, and B. M. Nair, “Fabrication of {198Au0} radioactive composite nanodevices and their use for nano-brachytherapy,” Nanomedicine, vol. 4, no. 1, pp. 57–69, 2008.


[114]      N. Chanda et al., “Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice,” Nanomedicine Nanotechnology, Biol. Med., vol. 6, no. 2, pp. 201–209, 2010.


[115]      R. Shukla, N. Chanda, A. Zambre, A. Upendran, K. Katti, and R. R. Kulkarni, “Laminin receptor specific therapeutic gold efficacy in treating prostate cancer,” PNAS, vol. 109, no. 31, pp. 12426–12431, 2012.


[116]      K. C. L. Black et al., “Radioactive 198Au-Doped Nanostructures with Different Shapes for In Vivo Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution,” ACS Nano, vol. 8, no. 5, pp. 4385–4394, 2014.


[117]      Y. Wang et al., “Radioluminescent Gold Nanocages with Controlled Radioactivity for Real-time In Vivo Imaging,” Nano Lett., vol. 13, no. 2, pp. 581–585, 2013.


[118]      Y. Zhao et al., “Gold Nanoparticles Doped with 199Au Atoms and Their Use for Targeted Cancer Imaging by SPECT,” Adv. Healthc. Mater., vol. 5, no. 8, pp. 928–935, 2016.


[119]      M. Lingappa, H. Song, S. Thompson, F. Bruchertseifer, and G. Sgouros, “Immunoliposomal Delivery of 213Bi for α-Emitter Targeting of Metastatic Breast Cancer,” Cancer Res., vol. 70, no. 17, pp. 6815–6823, 2010.


[120]      J. V. Rojas, J. D. Woodward, N. Chen, A. J. Rondinone, C. H. Castano, and S. Mirzadeh, “Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for 223Ra and 225Ra for targeted alpha therapy,” Nucl. Med. Biol., vol. 42, no. 7, pp. 614–620, 2015.


[121]      O. Mokhodoeva et al., “Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs,” J. Nanoparticle Res., vol. 18, p. 301, 2016.


[122]      A. Piotrowska et al., “Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy,” Nucl. Med. Biol., vol. 47, pp. 10–18, 2017.


[123]      M. F. Mclaughlin et al., “Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy,” PLoS One, vol. 8, no. 1, pp. 2–9, 2013.


[124]      M. F. Mclaughlin, D. Robertson, P. H. Pevsner, and J. S. Wall, “LnPO4 Nanoparticles Doped with Ac-225 and Sequestered Daughters for Targeted Alpha Therapy,” Cancer Biotherary Radiopharm., vol. 29, no. 1, pp. 34–41, 2013.

Published
2018-04-22
How to Cite
[1]
E. Salvanou, P. Bouziotis, and C. Tsoukalas, “Radiolabeled Nanoparticles in Nuclear Oncology”, Adv. Nan. Res., vol. 1, no. 1, pp. 38-55, Apr. 2018.
Section
Review Article