Intensity Dependent Photoconductivity in ZnO Nanostructured Film

Abstract

Many studies on the Photoconductivity of ZnO have been performed with an indication of reliable optical application due to fast photo response. This paper reports study of intensity dependent photoconductivity in ZnO nanostructured thin film with a thickness of 800 nm. ZnO nanostructured thin film on ultra clean glass substrate has been deposited using sol-gel spin coating technique. Conductivity at various illumination intensity has been measured using two probe method and found that photoconductivity increases by increasing illumination intensity. Photoconductivity can be utilized in the devices fabrication which are based on the decrease in the resistance of certain materials when they are exposed visible radiation. Photosensitivity and persistent photo conductivity also found to be increasing with illumination intensity. Photo sensitivity enhancement in Nanostructured ZnO is expected due to its large surface to volume ratio which is fundamentally more suitable for optical devices application. Persistent photoconductivity in the ZnO nanostructure thin film can be utilize in memory device applications.

Downloads

Download data is not yet available.

References

[1]       L. A. DeWerd and P. R. Moran, “Solid-state electrophotography with Al 2 O 3,” Med. Phys., vol. 5, no. 1, pp. 23–26, Jan. 1978. View


[2]       N. Chaudhary, A. A. Bahishti, and M. Zulfequar, “Photoconductivity of Se85−xTe15Hgx thin films,” Phys. B Condens. Matter, vol. 407, no. 12, pp. 2267–2271, Jun. 2012. View


[3]       A. A. Bahishti, M. A. Majeed Khan, B. S. Patel, F. S. Al-Hazmi, and M. Zulfequar, “Effect of laser irradiation on thermal and optical properties of selenium–tellurium alloy,” J. Non. Cryst. Solids, vol. 355, no. 45–47, pp. 2314–2317, Nov. 2009. View


[4]       A. A. Bahishti, M. A. M. Khan, S. Kumar, M. Husain, and M. Zulfequar, “effect of laser irradiation on the optical properties of amorphous se 96-x te 4 ga x thin films,” Chalcogenide Lett., vol. 4, no. 12, pp. 155–160, 2007. View


[5]       A. D. A. Buba and J. S. A. Adelabu, “Optical and Electrical Properties of Chemically Deposited ZnO Thin Films,” Pacific J. Sci. Technol., vol. 11, no. 2, 2010. View


[6]       R. Ghosh, B. Mallik, and D. Basak, “Dependence of photoconductivity on the crystallite orientations and porosity of polycrystalline ZnO films,” Appl. Phys. A, vol. 81, no. 6, pp. 1281–1284, Nov. 2005. View


[7]       Z.-M. Liao, Y. Lu, J. Xu, J.-M. Zhang, and D.-P. Yu, “Temperature dependence of photoconductivity and persistent photoconductivity of single ZnO nanowires,” Appl. Phys. A, vol. 95, no. 2, pp. 363–366, May 2009. View


[8]       J. Bao et al., “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett., vol. 6, no. 1, p. 404, May 2011. View


[9]       J. C. Moore, L. R. Covington, R. L. Foster, E. J. Gee, M. R. Jones, and S. A. Morris, “ZnO ultraviolet photodetectors grown via thermal oxidation of Zn-metal on glass and sapphire substrates,” 2011, vol. 7940, p. 79401L. View


[10]     A. A. Bahishti, M. Husain, and M. Zulfequar, “Effects of laser irradiation on optical properties of a-Se  100− x  Te  x  thin films,” Radiat. Eff. Defects Solids, vol. 166, no. 7, pp. 529–536, Jul. 2011. View


[11]     A. A. Bahishti, I. Uddin, M. Zulfequar, T. Alharbi, and T. Alharbi, “Laser Irradiation Effect on the Optical Band Gap of Se96-xTe4Hgx Thin Films,” J. Mod. Mater., vol. 1, no. 1, pp. 17–23, Jul. 2016.  View


[12]     A. A. Bahishti, I. Uddin, and M. Zulfequar, “Laser Irradiation Effect on the Optical Band Gap of Se-Te-Al Thin Films,” Int. Ann. Sci., vol. 1, no. 1, pp. 8–14, Oct. 2016. View


[13]     C. M. Firdaus, M. S. B. S. Rizam, M. Rusop, and S. R. Hidayah, “Characterization of ZnO and ZnO: TiO2 Thin Films Prepared by Sol-Gel Spray-Spin Coating Technique,” Procedia Eng., vol. 41, pp. 1367–1373, Jan. 2012. View


[14]     K.-T. Lam, Y.-J. Hsiao, L.-W. Ji, T.-H. Fang, K.-H. Hsiao, and T.-T. Chu, “High-Sensitive Ultraviolet Photodetectors Based on ZnO Nanorods/CdS Heterostructures,” Nanoscale Res. Lett., vol. 12, no. 1, p. 31, Dec. 2017. View


[15]     H. Howari, I. Uddin, and I. Uddin, “Variations in Optical Properties of ZnS/Cu/ZnS Nanostructures Due to Thickness Change of ZnS Cap Layer,” J. Mod. Mater., vol. 2, no. 1, pp. 25–30, Oct. 2016.  View


[16]     J. Moore and C. Thompson, “A Phenomenological Model for the Photocurrent Transient Relaxation Observed in ZnO-Based Photodetector Devices,” Sensors, vol. 13, no. 8, pp. 9921–9940, Aug. 2013. View


[17]     P. Irkhin, H. Najafov, and V. Podzorov, “Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors,” Sci. Rep., vol. 5, no. 1, p. 15323, Dec. 2015.  View


[18]     R. S. Saxena, R. K. Srivastava, S. K. Mishra, and R. K. Shukla, “Study of Photoconductivity and Photoluminescence in ZnO Microstructures Synthesized by Thermal Decomposition of Zinc Nitrate,” Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., vol. 88, no. 1, pp. 157–162, Mar. 2018. View


[19]     P. Biswas and P. Banerji, “Varying Photoconductivity of ZnO as a Function of Annealing Temperature,” Springer, Cham, 2014, pp. 819–821. View


[20]     Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films,” Jpn. J. Appl. Phys., vol. 33, no. Part 1, No. 12A, pp. 6611–6615, Dec. 1994. View


[21]     H.-H. Nahm, C. H. Park, and Y.-S. Kim, “Bistability of Hydrogen in ZnO: Origin of Doping Limit and Persistent Photoconductivity,” Sci. Rep., vol. 4, no. 1, p. 4124, May 2015. View


[22]     H.-L. Lu et al., “Reversible insulator-metal transition of LaAlO3/SrTiO3 interface for nonvolatile memory,” Sci. Rep., vol. 3, no. 1, p. 2870, Dec. 2013. View


[23]     A. M. Suhail, A. N. Naji, G. S. Muhammed, H. A. Thjeel, and Q. G. Al-Zaidi, “Fast Response ZnO/porous Silicon UV Photoconductive Detector,” Int. J. Thin Film Sci. Tec. NSP Nat. Sci. Publ. Cor, vol. 1, no. 1, pp. 35–42, 2012.  View


[24]     P. Ivanoff Reyes, C.-J. Ku, Z. Duan, Y. Xu, E. Garfunkel, and Y. Lu, “Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector,” Appl. Phys. Lett., vol. 101, no. 3, p. 31118, Jul. 2012. View


[25]     S. Srivastava, S. K. Mishra, R. S. Yadav, R. K. Srivastava, A. C. Panday, and S. G. Prakash, “photoconductivity and darkconductivity studies of mn-doped zns nanoparticles,” Dig. J. Nanomater. Biostructures, vol. 5, no. 1, pp. 161–167, 2010. View


[26]     S. K. Tripathi and A. Kumar, “Effect of incorporation of Sb and Ge on the photoconductivity of amorphous thin films of Se80Te20,” J. Non. Cryst. Solids, vol. 104, no. 2–3, pp. 229–236, Sep. 1988. View


[27]     D. Kumar and S. Kumar, “Composition Dependence of Photoconductivity in Amorphous Thin Films of Se .80−x Te .20 Ge x,” Turk J Phys, vol. 29, pp. 91–96, 2005. View


[28]     R. K. Pal, A. K. Agnihotri, and A. Kumar, “persistence of photoconductivity in amorphous se - te - zn system,” Chalcogenide Lett., vol. 7, no. 6, pp. 357–365, 2010. View


[29]     R. S. Sharma, D. Kumar, and A. Kumar, “Transient Photoconductivity in Amorphous Se-Ge-Ag System,” Turk J Phys, vol. 30, pp. 47–55, 2006. View

Published
2017-11-01
How to Cite
[1]
A. Bahishti and A. Majid, “Intensity Dependent Photoconductivity in ZnO Nanostructured Film”, Adv. Nan. Res., vol. 1, no. 1, pp. 23-30, Nov. 2017.
Section
Research Articles

Funding data