Nanocomposite Formulation of Ferulic Acid with Different Metals Using Computational Method




Formulation of Nanoparticle – drug composite is becoming a growing field of research in today’s scientific community. In comparison to the research on the experimental methods for these formulations and their application in various fields, the study of the interaction between drug and nanoparticle is less. In this study, we are reporting about the selection of metals for the formulation of nanocomposite with ferulic acid which is a well-known bioflavonoid having different medicinal activities. Ferulic acid contains only one –OH group which may reduce the conflict of selecting the metal atom binding site. For our study, we considered twelve metals which have been reported for having the potentiality to synthesis nanoparticles. These metals are gold, silver, copper, iron, zinc, nickel, platinum, palladium, rhodium, ruthenium, cadmium, and antimony. To mimic the actual nanocomposite structure, one metal atom has interacted with two molecules of ferulic acid. All nanocomposite model structures were designed using Avogadro software for windows. It was subjected to energy minimization and O-metal-O bond angle calculation. From the energy levels, it was observed that cadmium exhibited the lowest energy level and antimony showed the highest energy level suggesting their nanocomposite model structures as the most stable and unstable formulation respectively. 


Flavonoids, Ferulic Acid, Nanoparticles, Avogadro Software


Download data is not yet available.


B. Duncan, C. Kim, and V. M. Rotello, “Gold nanoparticle platforms as drug and biomacromolecule delivery systems”, Journal of Controlled Release, vol. 148, no. 1, pp. 122–127, 2010.

C. A. D. Santos, M. M. Seckler, A. P. Ingle, I. Gupta, S. Galdiero, M. Galdiero, A. Gade and M. Rai, “Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues”, Journal of Pharmaceutical Sciences, vol. 103, no. 7, pp. 1931–1944, May, 2014. DOI: 10.1002/jps.24001.

A. K. Mandal, “Silver Nanoparticles as Drug Delivery Vehicle against Infections”, Global Journal of Nanomedicine, vol. 3 no. 2, pp. 1–4, Oct. 2017. DOI: 10.19080/GJN.2017.03.555607

T. Kruk, K. Szczepanowicz, J. Stefanska, R. P. Socha and P. Warszynski, “Synthesis and antimicrobial activity of monodisperse copper nanoparticles”, Colloids and Surfaces B: Biointerfaces, vol. 128 (1), pp. 17 – 22. Apr. 2015.

S. A. Mahdy, Q. J. Raheed. and P. T. Kalaichelvan, “Antimicrobial Activity of zero-valent Iron Nanoparticles”, International Journal of Modern Engineering Research”, vol. 2, no. 1, pp. 578–581, Jan-Feb. 2012.

S. Rojas, F. J. Carmona, C. R. Maldonado, P. Horcajada, T. Hidalgo, C. Serre, J. A. R. Navarro and E. Barea, “Nanoscaled Zinc Pyrazolate Metal–Organic Frameworks as Drug-Delivery Systems”, Inorganic Chemistry, vol. 55, no. 5, pp. 2650–2663, Feb. 2016. DOI:

D. Guo, C. Wu, J. Li, A. Guo, Q. Li, H. Jiang, B. Chen and X. Wang “Synergistic Effect of Functionalized Nickel Nanoparticles and Quercetin on Inhibition of the SMMC-7721 Cells Proliferation”, Nanoscale Research Letters, vol. 4, Aug. 2009. DOI:

J. Kim, T. Shirasawa and Y. Miyamoto, “The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model”, Biomaterials, vol. 31, no. 22, pp. 5849–5854, Aug. 2010. DOI:

C. P. Adams, K. A. Walker, S. O. Obare and K. M. Docherty, “Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles”, PlosOne, vol. 9, no. 1, Jan. 2014, DOI:

L. Xu, D. Liu, D. Chen, H. Liu and J. Yang, "Size and shape controlled synthesis of rhodium nanoparticles”, Heliyon, vol. 5, no. 1, Jan. 2019. DOI:

G. Viau, R. Brayner, L.Poul , N. Chakroune , E. Lacaze, F. F. Vincent and F. Fievet, “Ruthenium Nanoparticles: Size, Shape, and Self-Assemblies”, Chemistry of Materials, vol. 15, no. 2, pp. 486 – 494, Dec. 2003. DOI:

L. Qi, H. Colfen and M. Antonietti, “Synthesis and Characterization of CdS Nanoparticles Stabilized by Double-Hydrophilic Block Copolymers”, Nano Letters, vol. 1, no. 2, pp. 61–65, Dec. 2001.

W. Yin, W. Chai, K. Wang, W. Ye, Y. Rui and B. Tang, “Facile synthesis of Sb nanoparticles anchored on reduced graphene oxides as excellent anode materials for lithium-ion batteries”, Journal of Alloys and Compounds, vol. 797, pp. 1249–1257, Aug. 2019.

S. Riaz, N. F. Rana, I Hussain, T Tanweer, A. Nawaz, F Menaa, H. A. Janjua, T. Alam, A Batool, A Naeem, M Hameed, S. M. Ali, “Effect of Flavonoid-Coated Gold Nanoparticles on Bacterial Colonization in Mice Organs” Nanomaterials, vol. 10, no. 9, pp. 1769, July 2020.

A. M. E. Shafey, “Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review” Green Processing and Synthesis, vol. 9, no. 1, pp. 304 – 339, June 2020.

C. Shi, X. Zhang, Y. Sun, M. Yang, K. Song, Z. Zheng, Y. Chen, X. Liu, Z. Jia, R. Dong, L. Cui and X. Xia, “Antimicrobial Activity of Ferulic Acid Against Cronobacter Sakazakii and Possible Mechanism of Action”, Foodborne Pathogens and Disease, vol. 13, no. 4, pp.196-204, Apr. 2016. DOI: 10.1089/fpd.2015.1992

H. Zhu, Q. H. Liang, X. G. Xiong, J. Chen, D. Wu, Y. Wang, B. Yang, Y. Zhang, Y. Zhang, and Xi Huang, “Anti-Inflammatory Effects of the Bioactive Compound Ferulic Acid Contained in Oldenlandia diffusa on Collagen-Induced Arthritis in Rats”, Evidence-Based Complementary and Alternative Medicine, Volume, May, 2014. Article ID 573801, 10 pages. DOI: 10.1155/2014/573801.

M. Ohnishi, T. Matuo, T. Tsuno, A. Hosoda, E. Nomura, H. Taniguchi, H. Sasaki, H. Morishita, “Antioxidant Activity and Hypoglycemic Effect of Ferulic Acid in STZ-induced Diabetic Mice and KK-Ay Mice”, Biofactors, vol. 21, no. 1-4, pp. 315-319, 2004. DOI: 10.1002/biof.552210161.

E. Latifi, A. A. Mohammadpour, B. Fathi H and H. Nourani, “Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats”, Biomedicine & Pharmacotherapy, vol. 110, pp. 197-202, Feb. 2019.

H. J. Kim, K. Ryu, J. H. Kang, A. J. Choi, Tae-il Kim, J. M. Oh, “Anticancer Activity of Ferulic Acid-Inorganic Nanohybrids Synthesized via Two Different Hybridization Routes, Reconstruction and Exfoliation-Reassembly”, The Scientific World Journal, Article ID 421967, pp. 9, Dec. 2013.

P. Karak, “Biological activities of flavonoids: an overview” International Journal of Pharmaceutical Sciences and Research, vol. 10 no. 4, pp. 1567-1574. Apr. 2019.

M. D Hanwell, D. E. Curtis, D. C.Lonie, T.Vandermeersch, E. Zurek and G. R. Hutchison “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform” 2012.. Journal of Cheminformatics. 4: pp. 17.

H. Y. Wang, Y. F. Li, C. Z. Huang, “Detection of Ferulic Acid Based on the Plasmon Resonance Light Scattering of Silver Nanoparticles”, Talanta, vol. 72 no. 5, pp. 1698-703. Jul. 2007. DOI: 10.1016/j.talanta.2007.02.028.

P. G. Lopez, N. Lazaro, C. G. Alvarado-Beltrán, A. Pineda, A. M. Balu and R. Luque, “One-Pot Cu/TiO2 Nanoparticles Synthesis for Trans-Ferulic Acid Conversion into Vanillin”, Molecules, vol. 24, no. 21, pp 3985, 2019.

A. E. Angkawijaya, A. E. Fazary, E. Hernowo, M. Taha and Y. H. Ju, “Iron (III), Chromium (III), and Copper (II) Complexes of L-Norvaline and Ferulic Acid”, Journal of Chemical & Engineering Data, vol. 56, no. 3, pp. 532–540, Feb. 2011. DOI:

E. P. Babu, A. Subastri, A. Suyavaran, K. Premkumar, V. Sujatha, B. Aristatile, Ghedeir M. Alshammari, V. Dharuman and C. Thirunavukkarasu “Size Dependent Uptake and Hemolytic Effect of Zinc Oxide Nanoparticles on Erythrocytes and Biomedical Potential of ZnO-Ferulic acid Conjugates”, Scientific Reports, vol. 7, Jun. 2017. Article number: 4203.

M. Ramezanpour, S. S. W. Leung, K. H. Delgado-Magnero, B. Y. M. Bashe, J. Thewalt, D.P. Tieleman, “Computational and experimental approaches for investigating nanoparticle-based drug delivery systems”, Biochimica et Biophysica Acta (BBA) – Biomembranes, vol. 1858, no. 7, July 2016, pp. 1688 – 1709.






Short Communication

How to Cite

D. Hazra and R. Pal, “Nanocomposite Formulation of Ferulic Acid with Different Metals Using Computational Method”, Adv. Nan. Res., vol. 3, no. 1, pp. 40-45, Oct. 2020.