Solubility of Mn in ZnO Crystallites Synthesized Using Solid State Techniques


  • Esau Nii Abekah Akwetey Armah Foundation Department, Lancaster University, Ghana
  • Martin Egblewogbe Department of Physics, University of Ghana, Legon
  • Hubert Azoda Koffi Department of Physics, University of Ghana, Legon
  • Alfred Ato Yankson Department of Physics, University of Ghana, Legon
  • Francis Kofi Ampong Department of Physics, Kwame Nkrumah University of Science and Technology, Ghana
  • Francis Boakye Department of Physics, Kwame Nkrumah University of Science and Technology
  • Josef Kwaku Ametefee Amuzu Department of Physics, University of Ghana, Legon
  • Robert Kwame Nkum Department of Physics, Kwame Nkrumah University of Science and Technology



Powder samples of Zn1-xMnxO nanocrystal were synthesized at a temperature of 200 °C using solid phase method. Dopant concentrations of 0.005 ≤ x ≤ 0.5 were studied. Powder x-ray diffraction (PXRD) patterns of the samples were analyzed with a view of determining the onset of secondary phases, hence the solubility limit of the dopant. The solubility limit for Mn in ZnO samples synthesized at 200 °C is realized at x < 0.3. With a regular pattern in increment of the Mn concentration, there were variations observed in the trend of the relative intensity, 2θ position and d-spacing indicating uneven addition of Mn (thus Mn2+, Mn3+ or Mn4+).


Doping Concentration, Solid Phase, Solubility Limit


Download data is not yet available.


O. Masala and R. Seshadri, “Synthesis Routes for Large Volumes of Nanoparticle, Annual Review of Materials Research”, vol. 34, no. 1, pp. 41-81, August 2004. DOI: 10.1146/annurev.matsci.34.052803.090949

A. Stadler, “Transparent Conducting Oxides-An Up-To-Date Overview”, Materials, vol. 5, no. 4, pp. 661–683, 2012.

Y. Caglar, S. Ilican and M. Caglar, Eur. Phys. J. B 58, 251, 2007.

H. M. Kim, K. Bae and S. Sohn, “Electronic and Optical Properties of Indium Zinc Oxide Thin Films Prepared by Using Nanopowder Target,” Japanese Journal of Applied Physics, vol. 50, no. 4, pp. 045801-045805, 2011.

M. Batzill, and U. Diebold, Prof Surf Sci, vol. 79, no. 47. 2005.

T. J. Coutts, J. D. Perkins, D. S. Ginley and T. O. Mason, “Transparent Conducting Oxides: Status and Opportunities in Basic Research,” Presented at the 195th Meeting of the Electrochemical Society, Seattle, Washington, May 2-6, 1999.

R. Saravanan, F. Santhanam and J. L. Berchmans, “Doping level of Mn in high temperature grown Zn1−xMnxO studied through electronic charge distribution, magnetization, and local structure”, Chemical Papers, vol. 66, no. 3, pp. 226–234, 2012. DOI: 10.2478/s11696-011-0129-8

M. Shatnawi, A. M. Alsmadi, I. Bsoul, B. Salameh, M. Mathai, G. Alnawashi, G. M. Alzoubi, F. Al-Dweri, M. S. Bawa’aneh, “Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles”, Results in Physics, vol. 6, pp. 1064–1071, 2016.

G. Voicu, O. Oprea, B. S. Vasile and E. Andronescu, “Photoluminescence and Photocatalytic Activity of Mn-Doped ZnO Nanoparticles”. Digest Journal of Nanomaterials and Biostructures, vol. 8, no. 2, pp. 667-675. 2013.

P. Thamaraiselvan, M. Venkatachalam, M. Saroja, P. Gowthaman, S. Ravikumar and S. Shankar, “Structural, morphological, optical and magnetic characterization of Mn Doped ZnO”, International Journal of Multidisciplinary Research and Development, volume 3; Issue 3; Page No. pp. 102-104, 2016.

N. Singh, S. Mittal, K. N. Sood, Rashmi, P. K. Gupta, “Controlling the Flow of Nascent Oxygen Using Hydrogen Peroxide Results in Controlling the Synthesis of ZnO/ZnO2”, Chalcogenide Letters, vol. 7, no. 4, pp. 275-281, April 2010.

U. V. Desnical, “Doping Limits in Il-VI Compounds-Challenges, Problems and Solutions”, Prog. Crystal Growth and Charact., vol. 36, no. 4. pp. 291-357, Elsevier Science Ltd., Great Britain, 1998.

M. Wang, A. Debernardi, Y. Berencén, R. Heller, C. Xu, Y. Yuan, Y. Xie, R. Böttger, L. Rebohle, W. Skorupa, M. Helm, S. Prucnal and S. Zhou, “Breaking the Doping Limit in Silicon by Deep Impurities”, Physical Review Applied, vol. 11, 054039, 2019.

D. Lançon, G. J. Nilsen, A. R. Wildes, K. Nemkovski, P. Huang, D. Fejes, H. M. Rønnow and A. Magrez, “MnO nanoparticles as the cause of ferromagnetism in bulk dilute Mn-doped ZnO”, Appl. Phys. Lett. vol. 109, 252405, pp. 1-5, 2016. DOI: 10.1063/1.4972956

J. Marquina, J. Mart´ın, J. Luengo, F. Vera, L. Roa, G. E. Delgado, F. Rodr´ıguez, C. Renero-Lecuna, R. Valiente and J. Gonz´alez, “Structural refinement, photoluminescence and Raman spectroscopy of Wurtzite Mn-doped ZnO pellets”, Revista Mexicana de F´ısica, vol. 63, pp. 32–39, 2017.

S. A. Ahmed, “Structural, optical, and magnetic properties of Mn-doped ZnO samples”, Results in Physics, vol. 7, pp. 604–610, 2017.

H. Mobarak, S. C. Paul, M. S. Islam, S. Akter and K. Sohag, “Study on the Frequency and Temperature Dependent Electrical Properties of MnO and PbO Doped ZnO Nanoceramics,” J Adv Chem Eng., vol 8, no. 1, 2018. DOI: 10.4172/2090-4568.1000183

O. Bilgili, “The Effects of Mn Doping on the Structural and Optical Properties of ZnO,” ACTA PHYSICA POLONICA A, vol. 136, no. 3, pp. 460-465, 2019. DOI: 10.12693/APhysPolA.136.460

S. D. Senol, E. Ozugurlu and L. Arda, “Synthesis, structure and optical properties of (Mn/Cu) co-doped ZnO nanoparticles”, Journal of Alloys and Compounds, 822, pp. 1-12, 2020. DOI: 10.1016/j.jallcom.2019.153514

P. Sebayang, C. Kurniawan, R. Y. Lubis, I. Priyadi, M. N. Nasruddin and D. Aryanto, “Investigation of Microstructure and Magnetic Properties of Zn1-xMnxO and Zn0.98-xMnxFe0.02O (x = 0, 0.05, and 0.09) prepared by Solid-state Reaction Method,” Makara Journal of Science, vol. 24, no. 2, pp. 95-100, June 2020. DOI: 10.7454/mss.v24i1.11914

E. N. A. Armah, F. K. Ampong, M. Egblewogbe, H. A. Koffi, F. Boakye, J. K. A. Amuzu, R. K. Nkum, Solubility of Mn in ZnO Nanocrystallites using Wet Chemical Synthesis, Adv. Nan. Res.; Vol. 2, no. 1, pp: 53-61, November 2019. DOI:

A. N. Fauzana, B. Z. Azmi, M. G. M. Sabri, W. R. W. Abdullah and M. Hashim, “Microstructural and Nonlinear Electrical Properties of ZnO Ceramics with Small Amount of MnO2 Dopant”, Sains Malaysiana, vol. 42, no. 8, pp. 1139–1144, 2013.

M. C. Morris, H. F. McMurdie, E. H. Evans, B. Paretzkin, H. S. Parker, N. C. Panagiotopoulos, and C. R. Hubbard, “Standard X-ray Diffraction Powder Patterns Section 18 Data for 58 Substances, International Centre for Diffraction Data”, Library of Congress Catalog Card Number: 53-61386, Nat. Bur. Stand. (U.S.), Monogr. 25-Sec. 18, pp. 110, 1981.

A. G. Ali, F. B. Dejene and H. C. Swart, “Effect of Mn doping on the structural and optical properties of sol-gel derived ZnO nanoparticles”, Cent. Eur. J. Phys. vol. 10, no. 2, pp. 478-484, 2012. DOI: 10.2478/s11534-011-0106-4

T. M. Dhruvashi and P. K. Shishodia, “Ferromagnetism in sol-gel derived ZnO:Mn nanocrystalline thin films”, Adv. Mater. Lett., vol. 7, no. 2, pp. 116-122, 2016. DOI 10.1007/s13204-012-0089-5

G. Voicu, O. Oprea, B. S. Vasile and E. Andronescu, “Photoluminescence and Photocatalytic Activity of Mn-Doped ZnO Nanoparticles,” Digest Journal of Nanomaterials and Biostructures, vol. 8, no. 2, pp. 667-675, 2013.

V. D. Mote, J. S. Dargad, and B. N. Dole, “Effect of Mn Doping Concentration on Structural, Morphological and Optical Studies of ZnO Nano-particles”, Nanoscience and Nanoengineering vol. 1, no. 2, pp. 116-122, 2013. DOI: 10.13189/nn.2013.010204

B. Goswami and R. Singha, “Effect of Mn Doping on Optical Properties of ZnO Nanoparticles”. IJIRSET, vol. 4, no. 4, pp. 2577, 2015. DOI: 10.15680/.2015.0404073

E. M. Abrishami, S. M. Hosseini, A. E. Kakhki, A. Kompany and M. Ghasemifard, “Synthesis and Structure of Pure and Mn-Doped Zinc Oxide Nanopowders”, International Journal of Nanoscience vol. 9, nos. 1 and 2, pp. 19-28, 2010. DOI: 10.1142/S0219581X1000648X

S. Deka and P. A. Joy, “Synthesis and magnetic properties of Mn doped ZnO nanowires”, Solid State Communications, vol. 142, pp. 190-194, 2007.






Research Articles

How to Cite

E. N. A. A. Armah, “Solubility of Mn in ZnO Crystallites Synthesized Using Solid State Techniques”, Adv. Nan. Res., vol. 3, no. 1, pp. 28-39, Sep. 2020.