Green Synthesis of Zinc Oxide Nanoparticles via Algal Route and its Action on Cancerous Cells and Pathogenic Microbes


  • Priyankari Bhattacharya Metallurgical and Materials Engineering Department, Jadavpur University
  • Kasturi Chatterjee CSIR-Indian Institute of Chemical Biology
  • Snehasikta Swarnakar CSIR-Indian Institute of Chemical Biology
  • Sathi Banerjee Metallurgical and Materials Engineering Department, Jadavpur University



Application of metal oxide nanoparticles for treatment of melanoma cells and microbes is being investigated. Zinc oxide nanoparticles (ZnO NPs) deserve special mention where particles cause destruction of melanoma cells with minimal damage to healthy cells. In the present study, pure phase ZnO NPs with particle size of 3.1 nm were synthesized by green route using algal extract. Skin melanoma (B16F10) cells were treated with synthesized ZnO NP and compared with commercial ZnO NPs and analysed for ED50 for cellular viability using 3% (w/v) of the doses. Sensitivity of B16F10 cells towards green synthesized ZnO NP was found to be more than commercial ZnO NPs. Results showed greater reduction in viability of cells exposed to green synthesized ZnO NPs and with increasing dose of the ZnO NPs, percentage viability of cells gradually reduced. 50% decrease in cellular viability (ED50) was obtained for green synthesized ZnO NP at 3% dose while commercial ZnO exhibited ED50 at 6% of doses. The ZnO NP also showed antimicrobial activity against Pseudomonas sp. and Staphylococcus sp. Zone of inhibition (ZOI) exhibited by Pseudomonas aeruginosa and Staphylococcus aureus for disc diffusion and well diffusion assay was around 10-22 mm and 9-12mm respectively.


ZnO NPs, green synthesis, Antimicrobial, melanoma cells, destruction of tumor cells


Download data is not yet available.


<p>[1] T. Liedl, B. Hogberg, J. Tytell, D.E. Ingber, W.M. Shih, “<em>Self-assembly of three-dimensional prestressed tensegrity structures from DNA</em>,” <em>Nature Nanotechnol</em>ogy, vol. 5, no. 7, pp.520–524, Nat. Nanotechnol. June,&nbsp;2010. doi: 10.1038/nnano.2010.107. Epub.</p>
<p>[2] W. Gao, J.M. Chan, O.C. Farokhzah, “<em>pH-responsive nanoparticles for drug delivery</em>”, <em>Molecular Pharmaceutics</em>, vol. 7, no. 6, pp. 1913-1920. Mol Pharm. October, 2010. doi: 10.1021/mp100253e.</p>
<p>[3] R.L. Spears, R.E. Cameraon, “<em>Carbon nanotubes for orthopaedic implants</em>”,<em> International Journal of Material Forming</em>, vol. 1, pp. 127-133, Int J Mater Form, July, 2008. <a href=""></a>.</p>
<p>[4] M. Martinez-Carmona, Y. Gun’ko, M. Vallet-Regi, “<em>ZnO nanostructures for drug delivery and theranostic applications”</em>.&nbsp;<em>Nanomaterials</em>. vol. 8, no. 4, pp. 1-27, April, 2018. doi: 10.3390/nano8040268.&nbsp;</p>
<p>[5] M.P. Vinardell, M. Mitjans, “<em>Antitumor activities of metal oxide nanoparticles</em>”, <em>Nanomaterials</em>, vol. 5, no. 2, pp. 1004-1021, June, 2015. <a href=""></a>.</p>
<p>[6] J. Jiang, J. Pi, J. Cai, “<em>The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications”</em>,<em>Bioinorganic Chemistry and Appplications</em>, vol. 2018, pp. 1-18, July, 2018, Bioinorg Chem Appl. doi:&nbsp;<a href="">10.1155/2018/1062562</a>.</p>
<p>[7] R. J. Vandebriel, W.H.D. Jong, “<em>A review of mammalian toxicity of ZnO nanoparticles</em>”, <em>Nanotechnology, Science and Application</em>, vol. 5, pp. 61-71. Nanotechnol Sci Appl. August, 2012. doi: 10.2147/NSA.S23932.</p>
<p>[8] F. Caputo, M. de Nicola, L. Ghibelli, “<em>Pharmacological potential of bioactive engineered nanomaterials</em>”, <em>Biochemical Pharmacology</em>, vol. 92, no 1, pp. 112–130. Biochem Pharmacol August, 2014. doi: 10.1016/j.bcp.2014.08.015.</p>
<p>[9] Y. Zhang, T.R. Nayak, H. Hong, W. Cai, “<em>Biomedical applications of zinc oxide nanomaterials</em>”, <em>Current Molecular Medicine</em>, vol. 13, pp. 1633–1645, Curr Mol Med. December, 2013. doi&nbsp;:&nbsp;<a href="">10.2174/1566524013666131111130058</a>.</p>
<p>[10] K.W. Ng, S.P.K&nbsp; Khoo, B.C. Heng, M.I. Setyawati, E. C. Tan, X. Zhao, S. Xiong, W. Fang, D. T. Leong, J.S.C. Loo,<em>&nbsp;“</em><em>The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles</em>”, <em>Biomaterials</em>, vol. 32, no. 32, pp. 8218-8225, November, 2011. <a href=""></a>.</p>
<p>&nbsp;[11] J. Wang, S. Gao, S. Wang, Z. &nbsp;Xu, L. &nbsp;Wei, “<em>Zinc oxide nanoparticles induce toxicity in CAL 27 oral cancer cell lines by activating PINK1/Parkin-mediated mitophagy”</em>, <em>The International Journal of Nanomedicine</em>, &nbsp; vol. 13, pp. 3441-3450, Int J Nanomedicine June, 2018. doi:&nbsp;<a href="">10.2147/IJN.S165699</a>.</p>
<p>[12] &nbsp;R. Tanino, Y. Amano, X. Tong, R. Sun, Y. Tsubata, M. Harada, Y. Fujita, T. Isobe, “<em>Anticancer Activity of ZnO Nanoparticles against Human Small-Cell Lung Cancer in an Orthotopic Mouse Model</em>”,<em> Molecular Cancer Therapeutics</em>, vol. 19, pp. 1-11, Mol Cancer Ther, November, 2020. &nbsp;doi: 10.1158/1535-7163.MCT-19-0018.</p>
<p>[13] M.P. Vinardell, M. Mitjans, “<em>Antitumor activities of metal oxide nanoparticles</em>”, <em>Nanomaterials</em>, vol. 5, no. 2, pp. 1004-1021, June, 2015. <a href=""></a>.</p>
<p>[14] R. Wahab, S. Dwivedi, A. Umar, S. Singh, I.H. Hwang, H. S. Shin, J. Musarrat, A.A. Al-Khedhairy, Y.S. Kim, “<em>ZnO nanoparticles induce oxidative stress in Cloudman S91 melanoma cancer cells</em>”, <em>Journal of Biomedical Technology,</em> vol. 9, no. 3, pp.441–449, J Biomed Nanotechnol, March, 2013. doi: 10.1166/jbn.2013.1593.</p>
<p>[15] R. Wahab, N.K. Kaushik, N. Kaushik, E.H. Choi, A. Umar, S. Dwivedi, J. Musarrat, A.A. Al-Khedhairy, “<em>ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells</em>”, <em>Journal of Biomedical Nanotechnology</em>, vol. 9 no.7, pp. &nbsp;1181–1189, J Biomed Nanotechnol<em>. </em>July, 2013. doi: 10.1166/jbn.2013.1652.</p>
<p>[16] R. Wahab, M.A. Siddiqui, Q. Saquib, S. Dwivedi, J. Ahmad, J., Musarrat, A.A. Al-Khedhairy, H.S., Shin, “<em>ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity</em>” <em>Colloids and Surfaces,</em> <em>B, Biointerfaces, </em>vol. 117, pp. 267–276. Colloids Surf B. Biointerfaces, May, 2014. doi: 10.1016/j.colsurfb.2014.02.038.</p>
<p>[17] S.S. Elshama,&nbsp;E. M.E. Abdallah,&nbsp;R.I. Abdel-Karim, “<em>Zinc Oxide Nanoparticles: Therapeutic Benefits and Toxicological Hazards”</em>, <em>The Open Nanomedicine Journal</em>, vol. 5, pp. 16-22, June,&nbsp;2018, doi: 10.2174/1875933501805010016.</p>
<p>[18] L. Mielcarz-Skalska, B. Smolińska, “<em>Zinc and nano-ZnO – influence on living organisms</em>”, <em>Biotechnology and Food Science</em>, vol. 81, no. 2, pp. 93-102, Biotechnol Food Sci, July, &nbsp;2017.</p>
<p>[19] T.V. Kolekar, S.S. Bandgar, S.S. Shirguppikar, V.S. Ganachari, “<em>Synthesis and characterization of ZnO nanoparticles for efficient gas sensors</em>”, <em>Archives of Applied&nbsp;Science&nbsp;Research</em>, vol. 5, no. 6, pp. 20–28. Arch Appl Sci Res, 2013. doi: 10.1166/jnn.2018.14651</p>
<p>[20] R. Dobrucka, J. Długaszewska, “<em>Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract</em>”, <em>Saudi Journal of </em>Biological Sciences, vol., 23, no. 4, pp. 517-523, Saudi J Biol Sci, July, 2016. <a href=""></a>.</p>
<p>[21] P. Rajiv, S. Rajeshwari, R. Venckatesh, “<em>Bio-Fabrication of zinc oxide nanoparticles using leaf extract of&nbsp;Parthenium hysterophorus&nbsp;L. and its size-dependent antifungal activity against plant fungal pathogens” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,</em> vol. 112, pp. 384–387, Spectrochim. Acta Part A Mol Biomol Spectrosc, August, 2013. doi: 10.1016/j.saa.2013.04.072.</p>
<p>[22] S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, B. Vaseeharan, “<em>Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larva</em>”, <em>Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy</em>, vol. 137, pp. 886–891. Spectrochim Acta Part A Mol Biomol Spectrosc. February, 2015. doi: 10.1016/j.saa.2014.08.064.</p>
<p>[23] “<em>Composition of the cellular envelopes of Anabaena cylindrica”,</em> J. H. Dunn, C. P. Wolk, <em>Journal of Bacteriology</em>, vol. 103, no. 1, pp. 153-158, J. Bacteriol. July, 1970.</p>
<p>[24] F. Namvar, H. S. Rahman, R. Mohamad, S. Azizi, P.M. Tahir, M. S. Chartrand, S. K. Yeap “<em>Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines”,</em> <em>Evidence-Based Complementary and Alternative Medicine</em>, vol. 2015, pp. 1-11. January, 2015. <a href=""></a>.</p>
<p>[25] P. Bhattacharya, S. Swarnakar, S. Ghosh, S. Majumdar, S. Banerjee, <em>Disinfection of drinking water via algae mediated green synthesized copper oxide nanoparticles and its toxicity evaluation</em>, <em>Journal of Environmental Chemical Engineering</em>, vol. 7, no. 1, pp. 102867, February, 2019. <a href=""></a>.</p>
<p>[26] J. Chauhan, N. Shrivastav, A. Dugaya, D. Pandey, “<em>Synthesis and Characterization of Ni and Cu Doped ZnO</em>”<em>. Journal of Nanomedicine and Nanotechnology</em> vol. 8, no. 2, pp. 1-8. J Nanomed Nanotechnol, 2017. doi: 10.4172/2157-7439.1000429.</p>
<p>[27] E. Preedia Babu, A. Subastri, A., Suyavaran, P. Lokeshwara Rao, M.K. Suresh, K. Jeevaratnam, C. Thirunavukkarasu, “<em>Extracellularly synthesized ZnO nanoparticles interact with DNA and augment gamma radiation induced DNA damage through reactive oxygen species</em>”, RSC Advance, vol. 5, no 76, pp. 62067-62077, RSC Adv. July, 2015.&nbsp; doi:<strong>&nbsp;</strong>10.1039/C5RA09935H.</p>
<p>&nbsp;[28] N. Narendhran, S. Rajeshwari, “<em>Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens</em>”. <em>Bulletin of Material Science, </em>vol. 39, no. 1, pp. 1–5, Bull Mater Sci, January, 2016. doi: 10.1007/s12034-015-1136-0.</p>
<p>[29] Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, &nbsp;“<em>Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni”</em>, <em>Applied and </em>Environmental<em> Microbiol</em>, vol. 77, no. 7, pp. 2325-2331, Appl Environ Microbiol, April, 2011. doi: 10.1128/AEM.02149-10.</p>
<p>[30] D-P Bai, X-F Zhang, G-L Zhang, Y-F Huang, S. Gurunathan, “<em>Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells</em>”, <em>International Journal of Nanomedicine</em>, vol. 12, pp. 6521–6535, Int J Nanomedicine, September, 2017. doi:&nbsp;<a href="">10.2147/IJN.S140071</a>.</p>
<p>[31] C. Wang, X. Hu, Y. Gao, Y. Ji, “<em>ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells</em>”,<em>&nbsp;BioMed Research International</em>, vol. 2015, pp. 1-9, August, 2015, Biomed Res Int. &nbsp;<a href=""></a>.</p>
<p>[32] H. S. Rahman, A. Rasedee, A. B. Abdul, N. A. Zeenathul, H. H. Othman, S. K. Yeap, C. W. How, W. A. Ghani, W. N. Hafiza, “<em>Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line</em>,” <em>International Journal of Nanomedicine,</em> vol. 9, no. 1, pp. 527–538, Int J Nanomedicine, January, 2014. doi: 10.2147/IJN.S54346.</p>
<p>&nbsp;[33] S. Gurunathan, J.W. Han, J.H. Park, E. Kim, Y-J Choi, D-N Kwon, J-H Kim, “<em>Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy</em>”,&nbsp;<em>International Journal of Nanomedicine</em>, vol. 10, pp. 6257-6276, Int J Nanomedicine, October, 2015. doi: 10.2147/IJN.S92449.&nbsp;</p>






Research Articles

How to Cite

P. Bhattacharya, K. Chatterjee, S. Swarnakar, and S. Banerjee, “Green Synthesis of Zinc Oxide Nanoparticles via Algal Route and its Action on Cancerous Cells and Pathogenic Microbes”, Adv. Nan. Res., vol. 3, no. 1, pp. 15-27, Jul. 2020.

Funding data