Green Synthesis of Silver Nanoparticles Using Waste Tea Leaves




Green synthesis of silver nanoparticles has gained momentum since the demand to synthesize nanoparticles in an eco-friendly way has increased significantly. Here we report, economic and cost-effective biosynthesis of silver nanoparticles using waste of tea leaves (Camellia sinensis). The aim of the study was to biosynthesize silver nanoparticles and to assess its potential applications such as antibacterial activity, plant growth induction and dye degradation. Standardization studies were done using UV- Spectroscopy to determine the optimum synthesis condition for synthesis of silver nanoparticles. The optimum conditions were found to be pH 6.0, ambient temperature condition and 5mM AgNO3 concentration. Characterization studies using UV-Visible Spectroscopy, TEM and AFM analysis show nanoscale range of the particles. The silver nanoparticles showed maximum antibacterial activity against K. pneumonia followed by E. coli and minimum activity against C. diptheriae. The nanoparticles showed significant effect on the growth of Vigna radiata seeds at 50% concentration of nanoparticles. The particles immobilized on cotton cloth showed antibacterial activity against Gram positive organisms. Dye degradation studies showed that the nanoparticles are able to degrade phenol red and blue textile dye effectively.


tea leaves, biosynthesis, silver nanoparticles, antibacterial activity, PTC, antibacterial cloth, dye degradation


Download data is not yet available.


<p>[1]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; G. Gnanajobitha, G. Annadurai, and C. Kannan, “Green synthesis of silver nanoparticle using Elettaria cardamomom and assesment of its antimicrobial activity,” <em>Int. J. Pharma Sci. Res.(IJPSR)</em>, vol. 3, no. 3, pp. 323–330, 2012, [Online]. Available:</p>
<p>[2]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; K. S. Siddiqi, A. Husen, and R. A. K. Rao, “A review on biosynthesis of silver nanoparticles and their biocidal properties,” <em>J. Nanobiotechnology</em>, vol. 16, no. 1, 2018, doi: 10.1186/s12951-018-0334-5.</p>
<p>[3]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A. U. Badnore, K. I. Sorde, K. A. Datir, L. Ananthanarayan, A. P. Pratap, and A. B. Pandit, “Preparation of antibacterial peel-off facial mask formulation incorporating biosynthesized silver nanoparticles,” <em>Appl. Nanosci.</em>, vol. 9, no. 2, pp. 279–287, 2019, doi: 10.1007/s13204-018-0934-2.</p>
<p>[4]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; M. Ramasamy and J. Lee, “Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices,” <em>Biomed Res. Int.</em>, vol. 2016, 2016, doi: 10.1155/2016/1851242.</p>
<p>[5]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Y. S. Pestovsky and A. Martínez-Antonio, “The use of nanoparticles and nanoformulations in agriculture,” <em>J. Nanosci. Nanotechnol.</em>, vol. 17, no. 12, pp. 8699–8730, 2017, doi: 10.1166/jnn.2017.15041.</p>
<p>[6]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; F. Mochi <em>et al.</em>, “Interaction of Colloidal Silver Nanoparticles with Ni2+: Sensing Application,” <em>Proceedings</em>, vol. 1, no. 10, p. 427, 2017, doi: 10.3390/proceedings1040427.</p>
<p>[7]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Z. Shen, G. Han, C. Liu, X. Wang, and R. Sun, “Green synthesis of silver nanoparticles with bagasse for colorimetric detection of cysteine in serum samples,” <em>J. Alloys Compd.</em>, vol. 686, no. October, pp. 82–89, 2016, doi: 10.1016/j.jallcom.2016.05.348.</p>
<p>[8]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; G. Ghodake, S. Shinde, G. D. Saratale, A. Kadam, R. G. Saratale, and D. Y. Kim, “Water Purification Filter Prepared by Layer-by-layer Assembly of Paper Filter and Polypropylene-polyethylene Woven Fabrics Decorated with Silver Nanoparticles,” <em>Fibers Polym.</em>, vol. 21, no. 4, pp. 751–761, 2020, doi: 10.1007/s12221-020-9624-2.</p>
<p>[9]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A. Patel, D. Sharma, P. Kharkar, and D. Mehta, “Application of Activated Carbon in Waste Water Treatment,” in <em>International Journal of Engineering Applied Sciences and Technology</em>, 2019, vol. 3, no. 12, pp. 63–66, doi: 10.33564/ijeast.2019.v03i12.010.</p>
<p>[10]&nbsp;&nbsp;&nbsp;&nbsp; K. N and S. M, “Efficient Removal of Toxic Textile Dyes using Silver Nanocomposites,” <em>J. Nanosci. Curr. Res.</em>, vol. 02, no. 03, pp. 2–6, 2017, doi: 10.4172/2572-0813.1000113.</p>
<p>[11]&nbsp;&nbsp;&nbsp;&nbsp; I. A. Adelere and A. Lateef, “A novel approach to the green synthesis of metallic nanoparticles: The use of agro-wastes, enzymes, and pigments,” <em>Nanotechnol. Rev.</em>, vol. 5, no. 6, pp. 567–587, 2016, doi: 10.1515/ntrev-2016-0024.</p>
<p>[12]&nbsp;&nbsp;&nbsp;&nbsp; K. K. Jabna and V. Meera, “Nanosilver As Antimicrobial Agent in Treatment of Water / Waste Water,” in <em>International Conference on Innovative Research in Science, Technology and Management</em>, 2017, vol. 3, no. 1, pp. 399–406, [Online]. Available:</p>
<p>[13]&nbsp;&nbsp;&nbsp;&nbsp; U. Nagaich, N. Gulati, and S. Chauhan, “Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract,” <em>J. Pharm.</em>, vol. 2016, pp. 1–8, 2016, doi: 10.1155/2016/7141523.</p>
<p>[14]&nbsp;&nbsp;&nbsp;&nbsp; R. Al-Othman Monira, R. M. Abd El-Aziz Abeer, A. Mahmoud Mohamed, and A. Hatamleh Ashraf, “Green biosynthesis of silver nanoparticles using Pomegranate peel and inhibitory effects of the nanoparticles on aflatoxin production,” <em>Pakistan J. Bot.</em>, vol. 49, no. 2, pp. 751–756, 2017, [Online]. Available:</p>
<p>[15]&nbsp;&nbsp;&nbsp;&nbsp; S. S. Lal and P. L. Nayak, “Green synthesis of gold nanoparticles using various extract of plants and spices,” <em>Int. J. Sci. Innov. Discov.</em>, vol. 2, no. 3, pp. 325–350, 2012, [Online]. Available:</p>
<p>[16]&nbsp;&nbsp;&nbsp;&nbsp; A. Sameen, S. Fathima, S. Ramlal, S. Kumar, and F. Khanum, “Nanopackaging of Silver using Spice Extract and their Characterization,” <em>Sci. Technol. Arts Res. J.</em>, vol. 3, no. 3, p. 52, 2014, doi: 10.4314/star.v3i3.9.</p>
<p>[17]&nbsp;&nbsp;&nbsp;&nbsp; K. M. Soto, C. T. Quezada-Cervantes, M. Hernández-Iturriaga, G. Luna-Bárcenas, R. Vazquez-Duhalt, and S. Mendoza, “Fruit peels waste for the green synthesis of silver nanoparticles with antimicrobial activity against foodborne pathogens,” <em>Lwt</em>, vol. 103, no. January, pp. 293–300, 2019, doi: 10.1016/j.lwt.2019.01.023.</p>
<p>[18]&nbsp;&nbsp;&nbsp;&nbsp; J. Kadam, P. Dhawal, S. Barve, and S. Kakodkar, “Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg2+ biosensing,” <em>SN Appl. Sci.</em>, vol. 2, no. 4, 2020, doi: 10.1007/s42452-020-2543-4.</p>
<p>[19]&nbsp;&nbsp;&nbsp;&nbsp; F. Du <em>et al.</em>, “Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications,” <em>Nanotechnology</em>, vol. 25, no. 31, 2014, doi: 10.1088/0957-4484/25/31/315702.</p>
<p>[20]&nbsp;&nbsp;&nbsp;&nbsp; A. Y. Yashin, B. V. Nemzer, E. Combet, and Y. I. Yashin, “Determination of the Chemical Composition of Tea by Chromatographic Methods: A Review,” <em>J. Food Res.</em>, vol. 4, no. 3, p. 56, 2015, doi: 10.5539/jfr.v4n3p56.</p>
<p>[21]&nbsp;&nbsp;&nbsp;&nbsp; S. Iravani, H. Korbekandi, S. V Mirmohammadi, and B. Zolfaghari, “Synthesis of silver nanoparticles: chemical, physicIravani, S., Korbekandi, H., Mirmohammadi, S. V, &amp; Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385–406. ,” <em>Res. Pharm. Sci.</em>, vol. 9, no. 6, pp. 385–406, 2014, [Online]. Available:</p>
<p>[22]&nbsp;&nbsp;&nbsp;&nbsp; W. R. Rolim <em>et al.</em>, “Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity,” <em>Appl. Surf. Sci.</em>, vol. 463, no. August, pp. 66–74, 2019, doi: 10.1016/j.apsusc.2018.08.203.</p>
<p>[23]&nbsp;&nbsp;&nbsp;&nbsp; K. Pluta, A. M. Tryba, D. Malina, and A. Sobczak-Kupiec, “Red tea leaves infusion as a reducing and stabilizing agent in silver nanoparticles synthesis,” <em>Adv. Nat. Sci. Nanosci. Nanotechnol.</em>, vol. 8, no. 4, 2017, doi: 10.1088/2043-6254/aa92b1.</p>
<p>[24]&nbsp;&nbsp;&nbsp;&nbsp; S. Onitsuka, T. Hamada, and H. Okamura, “Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts,” <em>Colloids Surfaces B Biointerfaces</em>, vol. 173, pp. 242–248, 2019, doi: 10.1016/j.colsurfb.2018.09.055.</p>
<p>[25]&nbsp;&nbsp;&nbsp;&nbsp; V. Kumar, R. Wadhwa, N. Kumar, and P. K. Maurya, “A comparative study of chemically synthesized and Camellia sinensis leaf extract-mediated silver nanoparticles,” <em>3 Biotech</em>, vol. 9, no. 1, p. 0, 2019, doi: 10.1007/s13205-018-1544-0.</p>
<p>[26]&nbsp;&nbsp;&nbsp;&nbsp; B. T. Hedge, J.E. and Hofreiter, “Carbohydrate chemistry,” J. N. Whistler, R.L. and Be Miller, Ed. Academic Press, New York.</p>
<p>[27]&nbsp;&nbsp;&nbsp;&nbsp; O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent.,” <em>J. Biol. Chem.</em>, vol. 193, no. 1, pp. 265–275, 1951, [Online]. Available:</p>
<p>[28]&nbsp;&nbsp;&nbsp;&nbsp; E. R. León, E. L. Rodríguez, C. R. Beas, G. Plascencia-Villa, and R. A. I. Palomares, “Study of Methylene Blue Degradation by Gold Nanoparticles Synthesized within Natural Zeolites,” <em>J. Nanomater.</em>, vol. 2016, 2016, doi: 10.1155/2016/9541683.</p>
<p>[29]&nbsp;&nbsp;&nbsp;&nbsp; G. Oza, S. Pandey, R. Shah, and M. Sharon, “Extracellular Fabrication of Silver Nanoparticles using Pseudomonas aeruginosa and its Antimicrobial Assay,” <em>Pelagia Res. Libr. Adv. Appl. Sci. Res.</em>, vol. 3, no. 3, pp. 1776–1783, 2012.</p>
<p>[30]&nbsp;&nbsp;&nbsp;&nbsp; S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise,” <em>J. Adv. Res.</em>, vol. 7, no. 1, pp. 17–28, 2016, doi: 10.1016/j.jare.2015.02.007.</p>
<p>[31]&nbsp;&nbsp;&nbsp;&nbsp; M. Thakur, S. Pandey, A. Mewada, R. Shah, G. Oza, and M. Sharon, “Understanding the stability of silver nanoparticles bio-fabricated using Acacia arabica (Babool gum) and its hostile effect on microorganisms,” <em>Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.</em>, vol. 109, pp. 344–347, 2013, doi: 10.1016/j.saa.2013.03.044.</p>
<p>[32]&nbsp;&nbsp;&nbsp;&nbsp; J. K. Patra and K. H. Baek, “Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects,” <em>Front. Microbiol.</em>, vol. 8, no. FEB, pp. 1–14, 2017, doi: 10.3389/fmicb.2017.00167.</p>
<p>[33]&nbsp;&nbsp;&nbsp;&nbsp; H. Ahari, “The Use of Innovative Nano emulsions and Nano-Silver Composites Packaging for anti-bacterial properties: An article review,” <em>Iran. J. Aquat. Anim. Heal.</em>, vol. 3, no. 1, pp. 61–73, 2017, doi: 10.18869/acadpub.ijaah.3.1.61.</p>
<p>[34]&nbsp;&nbsp;&nbsp;&nbsp; J. L. Spinoso-Castillo, R. A. Chavez-Santoscoy, N. Bogdanchikova, J. A. Pérez-Sato, V. Morales-Ramos, and J. J. Bello-Bello, “Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system,” <em>Plant Cell. Tissue Organ Cult.</em>, vol. 129, no. 2, pp. 195–207, 2017, doi: 10.1007/s11240-017-1169-8.</p>
<p>[35]&nbsp;&nbsp;&nbsp;&nbsp; M. Seif Sahandi, A. Sorooshzadeh, H. S. Rezazadeh, and H. A. Naghdibadi, “Effect of nano silver and silver nitrate on seed yield of borage,” <em>J. Med. Plants Res.</em>, vol. 5, no. 5, pp. 706–710, 2011.</p>
<p>[36]&nbsp;&nbsp;&nbsp;&nbsp; Q. B. Xu <em>et al.</em>, “Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan,” <em>Carbohydr. Polym.</em>, vol. 177, no. February, pp. 187–193, 2017, doi: 10.1016/j.carbpol.2017.08.129.</p>
<p>[37]&nbsp;&nbsp;&nbsp;&nbsp; A. Saha, R. Yadav, and K. Sivasanmugam, “Silver Nanoparticle Impregnated Biomedical Fiber,” <em>Ijtra.Com</em>, vol. 3, no. 2, pp. 194–197, 2015, [Online]. Available:</p>
<p>[38]&nbsp;&nbsp;&nbsp;&nbsp; D. Nath, P. Banerjee, A. Ray, and B. Bairagi, “Green Peptide–nanomaterials; A Friendly Healing Touch for Skin Wound Regeneration,” <em>Adv. Nano Res.</em>, vol. 2, no. 1, pp. 14–31, 2019, doi: 10.21467/anr.2.1.14-31.</p>
<p>[39]&nbsp;&nbsp;&nbsp;&nbsp; B. Pannerselvam <em>et al.</em>, “An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phytosynthesized silver nanoparticles in male Wistar albino rats,” <em>Eur. J. Pharm. Sci.</em>, vol. 100, pp. 187–196, 2017, doi: 10.1016/j.ejps.2017.01.015.</p>
<p>[40]&nbsp;&nbsp;&nbsp;&nbsp; A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, and M. Atarod, “Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract,” <em>J. Alloys Compd.</em>, vol. 689, pp. 15–20, 2016, doi: 10.1016/j.jallcom.2016.07.253.</p>
<p>[41]&nbsp;&nbsp;&nbsp;&nbsp; V. Sai Saraswathi, N. Kamarudheen, K. V. BhaskaraRao, and K. Santhakumar, “Phytoremediation of dyes using Lagerstroemia speciosa mediated silver nanoparticles and its biofilm activity against clinical strains Pseudomonas aeruginosa,” <em>J. Photochem. Photobiol. B Biol.</em>, vol. 168, pp. 107–116, 2017, doi: 10.1016/j.jphotobiol.2017.02.004.</p>






Research Articles

How to Cite

D. Rajput, S. Paul, and A. Gupta, “Green Synthesis of Silver Nanoparticles Using Waste Tea Leaves”, Adv. Nan. Res., vol. 3, no. 1, pp. 1-14, Jul. 2020.