Green Peptide–nanomaterials; A Friendly Healing Touch for Skin Wound Regeneration

  • Debjani Nath Department of Zoology, University of Kalyani
  • Pratyusha Banerjee Department of Zoology, University of Kalyani
  • Anugrah Ray Department of Zoology, University of Kalyani
  • Baishakhi Bairagi Department of Zoology, University of Kalyani

Abstract

The complex phenomenon by which the body responds to any injury of skin or tissue is known as wound healing. A number of phases like exudative, proliferative, and extracellular matrix remodeling are orchestrated events to be occurred involving blood cells, parenchymal cells, and different soluble mediators. Different internal, as well as external factors, regulate the speed and quality of healing. The delay in wound healing process causes the chronic wound or scar formation. At the present moment, the upscale research for identification of agents causing accelerated healing is important. Moreover, the biocompatibility of the accelerators needs to be investigated. Recent biomedical researches for wound care target to provide antimicrobial protection as well as matrix scaffolding for quick repairing of the skin tissue. In recent studies with natural peptides have shown that they are important components in developing the nano-medicines for their usefulness and therapeutic efficiency. New therapeutic formulations can be developed using these natural peptides utilizing different nanoparticle delivery system. This review deals with the developmental study on efficient wound care system where the possible use of natural peptides in combination with nanomaterials has been explored. A trial has also been made on the findings made over the past few years on the use of peptides as tissue regenerating agents through effective wound healing pathway.

Keywords: wound healing, tissue regeneration, nanomaterial, green peptide nanoparticles, biocompatibility, bioactive

Downloads

Download data is not yet available.

References


  1. Zhou, W.; Gao, X.; Liu, D.; Chen, X. Gold Nanoparticles for in Vitro Diagnostics. Chem. Rev. 2015, 115, 10575–10636.

  2. DaCosta, M.V.; Doughan, S.; Han, Y.; Krull, U.J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Act. 2014, 832, 1–33.

  3. Shi, D.; Sadat, M.E.; Dunn, A.W.; Mast, D.B. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 2015, 7, 8209–8232.

  4. Goldberg, M.S. Immunoengineering: How nanotechnology can enhance cancer immunotherapy. Cell 2015, 161, 201–204.

  5. MubarakAli, D.; Gopinath, V.; Rameshbabu, N.; Thajuddin, N. Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater. Lett. 2012, 74, 8–11.

  6. Saldan, I.; Semenyuk, Y.; Marchuk, I.; Reshetnyak, O. Chemical synthesis and application of palladium nanoparticles. J. Mat. Sci. 2015, 50, 2337–2354.

  7. Gutiérrez, L.; Costo, R.; Grüttner, C.; Westphal, F.; Gehrke, N.; Heinke, D.; Fornara, A.; Pankhurst, Q.A.; Johansson, C.; Veintemillas-Verdaguer, S.; et al. Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans. 2015, 44, 2943–2952.

  8. Shervani, Z.; Yamamoto, Y. Carbohydrate-directed synthesis of silver and gold nanoparticles: Effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites. Carbohydr. Res. 2011, 346, 651–658.

  9. Yokota, S.; Kitaoka, T.; Opietnik, M.; Rosenau, T.; Wariishi, H. Synthesis of gold nanoparticles for in situ conjugation with structural carbohydrates. Angew. Chem. Int. Ed. 2008, 47, 9866–9869.

  10. Engelbrekt, C.; Sørensen, K.H.; Zhang, J.; Welinder, A.C.; Jensen, P.S.; Ulstrup, J. Green synthesis of gold nanoparticles with starch–glucose and application in bioelectrochemistry. J. Mater. Chem. 2009, 19, 7839–7847.

  11. Care, A.; Bergquist, P.L.; Sunna, A. Solid-binding peptides: Smart tools for nanobiotechnology. Trends Biotechnol. 2015, 33, 259–268.

  12. Tan, Y.N.; Lee, J.Y.;Wang, D.I.C. Uncovering the design rules for peptide synthesis of metal nanoparticles. J. Am. Chem. Soc. 2010, 132, 5677–5686.

  13. Filice, M.; Marciello, M.; Morales, M.P.; Palomo, J.M. Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C–C bond formation and tandem catalysis. Chem. Commun. 2013, 49, 6876–6878.

  14. Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356.

  15. Chinnadayyala, S.R.; Santhosh, M.; Singh, N.K.; Goswami, P. Alcohol oxidase protein mediated in situ synthesized and stabilized gold nanoparticles for developing amperometric alcohol biosensor. Biosen. Bioelec. 2015, 69, 151–161.

  16. Hulkoti, N.I.; Taranath, T.C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B 2014, 121, 474–483.

  17. Mashwani, Z.U.R.; Khan, T.; Khan, M.A.; Nadhman, A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: Current status and future prospects. App. Microb. Biotechnol. 2015, 99, 9923–9934.

  18. Sousa, A.A.; Hassan, S.A.; Knittel, L.L.; Balbo, A.; Aronova, M.A.; Brown, P.H.; Schuck, P.; Leapman, R.D. Biointeractions of ultrasmall glutathione-coated gold nanoparticles: Effect of small size variations. Nanoscale 2016, 8, 6577–6588.

  19. Vlieghe PLisowski VMartinez JKhrestchatisky M. Synthetic therapeutic peptides: science and market.Drug Discov Today.2010  15(1-2):40-56.

  20. Seetharam RN: Nanomedicine emerging area of nanotechnology research, curr. Sci. (3) (91) (260), 2006

  21. Sandhiya S, Dkhar SA, Surendiran A: Emerging trends of nanomedicine – an Fundam. Clin. Pharmacol. 2009, 23(3), 263–269

  22. Suri SS, Fenniri H, Singh B: Nanotechnology-based drug delivery systems Occup. Med. Toxicol. 2007, 2, 16.

  23. Tocco, I.; Zavan, B.; Bassetto, F.; Vindigni, V. Nanotechnology Based Therapies for Skin Wound Regeneration. J. Nanomater. 2012, 11, 1471–1477.

  24. Wang Z. and Wang G., APD: the antimicrobial peptide database, Nucleic Acids Research, 2004, 32, D590–D592,.

  25. Park I. Y., Cho J. H., Kim K. S., Kim Y.B., Kim M. S., and Kim S. C., Helix stability confers salt resistance upon helical antimicrobial peptides, The Journal of Biological Chemistry, 2004, 279(14), 13896–13901,.

  26. Yamaguchi Y. and Huffaker A., Endogenous peptide elicitors in higher plants. Current Opinion in Plant Biology, 2011,14(4), 351–357.

  27. Hancock R. E.W., Peptide antibiotics, The Lancet, 1997, 349(9049), 418–422.

  28. Boman H. G., Innate immunity and the normal microflora, Immunological Reviews, 2000, 173 (1) 5–16,.

  29. M.Ward, Disease in Plants, Macmillan, 1901.

  30. Powers J.P. S., Rozek A., and Hancock R. E. W., Structureactivity relationships for the 𝛽-hairpin cationic antimicrobial peptide polyphemusin I, Biochimica et Biophysica Acta: Proteins and Proteomics, 2004,1698( 2), 239–250.

  31. L, Tang J., Liu H., Shen C., Rong M., Zhang Z., Lai R.. A potential wound-healing-promoting peptide from salamander skin. The faseb journal, 2014; 28 (9): 3919

  32. Cao X,; Wang Y,  Wu. C, Li .X,; Yang, Z F,  Bian W, Wang S, SongY,  Tang J & Yang.X.Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing,Scientific Reports 2018, 8,  943 

  33. van der Weerden N. L., Hancock R. E.W., and Anderson M. A., Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process, Journal of Biological Chemistry, 2010, 285 (48),37513–37520.

  34. Nawrot R., Barylski J., Nowicki G., Broniarczyk J., Buchwald W., and Go´zdzicka A.J´ozefiak, Plant antimicrobial peptides, Folia Microbiologica, , 2014 , 59 (3),181–196.

  35. Gr¨un S., Lindermayr C., Sell S., and Durner J., Nitric oxide and gene regulation in plants, Journal of Experimental Botany, 2006, 57(3),  507–516.

  36. Sitaram N. and Nagaraj R., Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity, Biochimica et Biophysica Acta: Biomembranes, 1999, 1462 (1-2), 29–54,.

  37. Yokoyama S., Iida Y., Kawasaki Y., Minami Y., Watanabe K., and Yagi F., The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity, Journal of Peptide Science, 2009, 15(7), 492–497.

  38. Selitrennikoff C. P., Antifungal Proteins, Applied and Environmental Microbiology, 2001, 67(7), 2883–2894,.

  39. Perez A., Li Q.X., Perez-Romero P. et al., A new class of receptor for herpes simplex virus has heptad repeat motifs that are common to membrane fusion proteins, Journal of Virology, 2005, 79(12) 7419–7430.

  40. Edward W. Robinson J., McDougall B., Tran D., and Selsted M. E., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils, Journal of Leukocyte Biology, 1998, 63(1), 94–100.

  41. Stec B., Plant thionins: the structural perspective, Cellular and Molecular Life Sciences, 2006, 63(12),1370–1385.

  42. Pelegrini P. B., Quirino B. F., andFranco O. L., Plant cyclotides: an unusual class of defense compounds, Peptides, 2007, 28(7), 1475–1481.

  43. Stotz H. U., Thomson J. G., and Wang Y., Plant defensins: defense, development and application, Plant Signaling & Behavior, 2009, 4(11), pp. 1010–1012.

  44. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In Vivo Protein Transduction: Delivery of a Biologically Active Protein into the Mouse. Science. 1999; 285(5433):1569–1572.

  45. Torchilin V.P., Rammohan R., Weissig V., Levchenko T.S. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proceedings of the National Academy of Sciences. 2001; 98(15):8786–8791.

  46. A.D., Pabo C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988; 55(6):1189–1193.

  47. M., Loewenstein. P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988; 55(6):1179–1188.

  48. Vivès. E., Brodin. P., Lebleu. B. A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus. Journal of Biological Chemistry. 1997; 272(25):16010–16017.

  49. D., Joliot. A.H., Chassaing. G., Prochiantz. A. The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry. 1994; 269(14):10444–10450.

  50. G., O’Hare. P. Intercellular Trafficking and Protein Delivery by a Herpesvirus Structural Protein. Cell. 1997; 88(2):223–233.

  51. K.K., Pan. H., Lanza. G.M., Wickline. S.A. Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials. 2013; 34(12):3110–3119.

  52. S, Simon. M.J., Hue. C.D., Morrison. B., Banta. S. An Unusual Cell Penetrating Peptide Identified Using a Plasmid Display-Based Functional Selection Platform. ACS Chemical Biology. 2011; 6(5):484–491.

  53. F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discovery Today. 2012; 17(15-16):850–860.

  54. P., Wilce. J. Venom as a source of useful biologically active molecules. Emergency Medicine. 2001; 13(1):28–36.

  55. R.J., Garcia. M.L. Therapeutic potential of venom peptides. Nature Reviews Drug Discovery. 2003; 2(10):790–802.

  56. S., Lewis. R.J. Use of Venom Peptides to Probe Ion Channel Structure and Function. Journal of Biological Chemistry. 2010; 285(18):13315–13320.

  57. D.I, Hughes. D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiology Reviews. 2011; 35(5):901–911.

  58. K., Courvalin. P., Dantas. G., Davies. J., Eisenstein. B., Huovinen. P., Zgurskaya H.I. Tackling antibiotic resistance. Nature Reviews Microbiology. 2011; 9(12):894–896.

  59. R.E.W, Sahl. H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology. 2006; 24(12):1551–1557.

  60. Nguyen L.T., Haney E.F., Vogel H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology. 2011; 29(9):464–472.

  61. Zasloff M. Antimicrobial Peptides in Health and Disease. New England Journal of Medicine. 2002; 347(15):1199–1200.

  62. Bradshaw J. Cationic antimicrobial peptides: issues for potential clinical use. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy. 2003; 17(4):233–240.

  63. Jallouk A.P., Moley. K.H., Omurtag. K., Hu. G., Lanza G.M., Wickline S.A., Hood J.L. Nanoparticle Incorporation of Melittin Reduces Sperm and Vaginal Epithelium Cytotoxicity. PLoS ONE. 2014; 9(4):95411.

  64. Hood J.L, Jallouk A.P., Campbell N, Ratner L, Wickline S.A. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral Therapy. 2013; 18(1):95–103.

  65. Chereddy K.K, Her C.H, Comune M, Moia C, Lopes A, Porporato P.E., Préat V. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. Journal of Controlled Release. 2014; 194:138–147.

  66. Hancock R. E.W., Peptide antibiotics, The Lancet, 1997, 349( 9049), 418–422.

  67. Boman H. G., Innate immunity and the normal microflora, Immunological Reviews, 2000, 173(1), 5–16.

  68. Ward H. M., Disease in Plants, Macmillan, 1901, New york and London,pp309

  69. Powers J.P. S., Rozek A., and Hancock R. E. W., Structureactivity relationships for the 𝛽-hairpin cationic antimicrobial peptide polyphemusin I, Biochimica et Biophysica Acta: Proteins and Proteomics, 2004, 1698(2), 239–250.

  70. Hultmark D., Steiner H., Rasmuson T., and Boman H. G., Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia, European Journal of Biochemistry, 1980, 106(1),7–16.

  71. C. Mettenleiter, Brief overview on cellular virus receptors, Virus Research, vol. 82, no. 1-2, pp. 3–8, 2002.

  72. van der Weerden N. L., Hancock R. E.W., and Anderson M. A., Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process, Journal of Biological Chemistry, 2010, 285( 48),  37513–37520.

  73. Nawrot R., Barylski J., Nowicki G., Broniarczyk J., Buchwald W., and Go´zdzicka-J´ozefiak A., Plant antimicrobial peptides, Folia Microbiologica, 2014, 59(3), 181–196,.

  74. Bahar A. A. and Ren D., Antimicrobial peptides, Pharmaceuticals, 2013, 6(12), 1543–1575,.

  75. Jenssen H., Hamill P., and Hancock R. E. W., Peptide antimicrobial agents, Clinical Microbiology Reviews, 2006, 19(3), 491–511.

  76. Liu Y., Gong W., Huang C. C., Herr W., and Cheng X., Crystal structure of the conserved core of the herpes simplex virus transcriptional regulatory protein VP16, Genes and Development, 1999, 13(13), 1692–1703.

  77. Pelegrini P. B., Del Sarto R. P., Silva O. N., Franco O. L., and Grossi-De-Sa M. F., Antibacterial peptides from plants: what they are and how they probably work, Biochemistry Research International, 2011, 2011, 250349, .

  78. Sinha S., Cheshenko N., Lehrer R. I., and Herold B. C., NP- 1, a rabbit 𝛼-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2, Antimicrobial Agents and Chemotherapy, 2003, 47(2), 494–500.

  79. Wachinger M., Kleinschmidt A., Winder D. et al., Antimicrobial peptidesmelittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression, Journal of General Virology, 1998, 79(4),  731–740.

  80. Laquerre S., Argnani R., Anderson D. B., Zucchini S., Manservigi R., and Glorioso J. C., Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread, Journal of Virology, 1998, 72( 7),  6119–6130.

  81. Sitaram N. and Nagaraj R., Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity, Biochimica et Biophysica Acta: Biomembranes, 1999, 1462(1-2), 29–54.

  82. Yokoyama S., Iida Y., Kawasaki Y., Minami Y., Watanabe K., and Yagi F., The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity, Journal of Peptide Science, 2009, 15(7), 492–497.

  83. Selitrennikoff C. P., Antifungal Proteins, Applied and Environmental Microbiology, 2001, 67( 7), 2883–2894,.

  84. Perez A.,. Li Q.X, Perez-Romero P.et al., A new class of receptor for herpes simplex virus has heptad repeat motifs that are common to membrane fusion proteins, Journal of Virology, 2005, 79(12),7419–7430.

  85. Edward W. Robinson Jr., McDougall B., Tran D., and Selsted M. E., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils, Journal of Leukocyte Biology, 1998, 63(1), 94–100.

  86. Stec B., Plant thionins: the structural perspective, Cellular and Molecular Life Sciences, 2006, 63(12), 1370–1385.

  87. Pelegrini P. B., Quirino B. F., and Franco O. L., Plant cyclotides: an unusual class of defense compounds, Peptides, 2007, 289(7),1475–1481,.

  88. Stotz H. U., Thomson J. G., and Wang Y., Plant defensins: defense, development and application, Plant Signaling & Behavior, 2009, 4(11) 1010–1012.

  89. Fernandez-de Caleya R., Gonzalez-Pascual B., Garc´ıa- Olmedo F., and Carbonero P., Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro, Applied Microbiology, 1972, 23( 5), 998–1000.

  90. Liu Y., Luo J., Xu C.et al., Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed, Plant Physiology, 2000, 122(4), 1015–1024.

  91. Tailor R. H., Acland D. P., Attenborough S. et al., A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein, The Journal of Biological Chemistry, 1997, 272( 39) 24480–24487.

  92. Palumbo D.,. Iannaccone M, Porta A., and Capparelli R. Experimental antibacterial therapy with puroindolines, lactoferrin and lysozyme in Listeria monocytogenes-infected mice, Microbes and Infection, 2010, 12( 7), 538–545.

  93. Marcus J. P., Green J. L., Goulter K. C., and Manners J.M., A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels, Plant Journal, 1999, 19( 6), 699–710.

  94. Terras F.R.G., Eggermont K., Kovaleva V. et al., Small cysteinerich antifungal proteins from radish: their role in host defense, The Plant Cell, 1995, 7(5), 573–588,.

  95. Zottich U., Da Cunha M., Carvalho A. O. et al., Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with 𝛼-amylase inhibitor properties, Biochimica et Biophysica Acta: General Subjects, 2011, 1810( 4), 375–383.

  96. Remuzgo C., Oewel T. S., Daffre S. et al., Chemical synthesis, structure-activity relationship, and properties of shepherin I: a fungicidal peptide enriched in glycine-glycine-histidine motifs, Amino Acids, 2014, 46(11),  2573–2586.

  97. Berrocal-Lobo M., Segura A., Moreno M., L´opez G., Garc´ıa- Olmedo F., and Molina A., Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection, Plant Physiology, 2002, 128( 3), 951–961.

  98. Fujimura M., Minami Y., Watanabe K., and Tadera K., Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum ), Bioscience, Biotechnology and Biochemistry, 2003,67(8), 1636–1642.

  99. Segura A., Moreno M., Molina A., and Garc´ıa-Ol medo F., Novel defensin subfamily from spinach (Spinacia oleracea), FEBS Letters, 1998, 435( 2-3), 159–162.

  100. Wong J. H.and Ng T. B., Lunatusin, a trypsin-stable antimicrobial peptide from lima beans (Phaseolus lunatus ), Peptides, 2005, 26(11), 2086–2092.

  101. Jack H. W. and Tzi B. N., Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris), International Journal of Biochemistry and Cell Biology, 2005, 37(8), 1626–1632.

  102. Sharma S., Verma H. N., and Sharma N. K., Cationic bioactive peptide from the seeds of benincasa hispida, International Journal of Peptides, 2014, Article ID 156060, 12 pages.

  103. Ye X. Y, Ng T. B., and Rao P. F., Cicerin and arietin, novel chickpea peptides with different antifungal potencies, Peptides, 2002, 23(5), 817–822.

  104. Chan Y. S., Wong J. H., Fang E. F., Pan W. L., and Ng T. B., An antifungal peptide from Phaseolus vulgaris brown kidney bean, Acta Biochim Biophys Sinica, 2012, 44(4), 307–315.

  105. Wu X., Sun J., Zhang G., Wang H., and Ng T. B., An antifungal defensin from Phaseolus vulgaris “Cloud Bean,” Phytomedicine, 2011,18( 2-3), 104–109.

  106. Thomson A. B. R., Keelan M., Thiesen A., Clandinin M. T., Ropeleski M., and Wild G. E., Small bowel review: normal physiology part 1, Digestive Diseases and Sciences, 2001, 46(12), 2567–2587.

  107. ordegen P. H¨, Cabaret J., Hertzberg H., Langhans W., and Maurer V., In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methylthiazolyl-tetrazoliumreduction assay, Journal of Ethnopharmacology, 2006, 108(1), 85–89.

  108. Zasloff M., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(15),5449–5453.

  109. Park Y., Jang S.H., Lee D. G., and Hahm K.S., Antinematodal effect of antimicrobial peptide, PMAP-23, isolated fromporcine myeloid against Caenorhabditis elegans, Journal of Peptide Science, 2004,10(5), 304–311.

  110. Tagboto S. and Townson S., Antiparasitic properties of medicinal plants and other naturally occurring products, Advances in Parasitology, 2001,50, 199–295.

  111. Stepek G., Buttle D. J., Duce I. R., Lowe A., and Behnke J. M., Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro, Parasitology, 2005, 130(2), 203– 211.

  112. Lay F. T. and Anderson M. A., Defensins—components of the innate immune system in plants, Current Protein & Peptide Science, 2005, 6(1), 85–101.

  113. Ganz T., Selsted M. E., Szklarek D. et al., Defensins. Natural peptide antibiotics of human neutrophils, The Journal of Clinical Investigation, 1985, 76(4), 1427–1435.

  114. Patil A., Hughes A. L., and Zhang G., Rapid evolution and diversification of mammalian 𝛼-defensins as revealed by comparative analysis of rodent and primate genes, Physiological Genomics, 2005, 20,1–11.

  115. Tian C., Gao B., Fang Q., Ye G., and Zhu S., Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective, BMC Genomics, 2010, 11(1), article 187.

  116. Saito T., Kawabata S. I., Shigenaga T. et al., A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity, Journal of Biochemistry, 1995, 117( 5),1131–1137.

  117. Thomma B. P. H. J., Cammue B. P. A., and Thevissen K., Plant defensins, Planta, 2002, 216( 2),193–202.

  118. Galg´oczy L., Kov´acs L., and V´agv¨olgyi C., Defensin-like antifungal proteins secreted by filamentous fungi, in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Technology, pp. 550–559, 2010.

  119. Games P. D., dos Santos I. S., Mello ´E. O. et al., Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris seeds, Peptides, 2008, 29(12),2090–2100.

  120. Broekaert W. F., Cammue B. P. A., de Bolle M. F. C., Thevissen K., de Samblanx G. W., and Osborn R. W., Antimicrobial peptides from plants, Critical Reviews in Plant Sciences, 1997, 16( 3), 297–323.

  121. Osborn R. W., De Samblanx G. W., Thevissen K. et al., Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae, FEBS Letters, 1995, 368(2), 257–262.

  122. Garc´ıa-Olmedo F., Molina Fern´andez A., Alamillo J. M., and Rodriguez Palenzuela P. , Plant defence peptides, Peptide Science, 1998, 47( 6), 479–491.

  123. Finkina E. I., Shramova E. I., Tagaev A. A., and Ovchinnikova T. V., A novel defensin from the lentil Lens culinaris seeds, Biochemical and Biophysical Research Communications, 2008, 371(4), 860–865.

  124. Wheeler J. I. and Irving H. R., Plant peptide signaling: an evolutionary adaptation, in Plant Signaling Peptides, pp. 1–23, Springer, 2012.

  125. Billington T., Pharmawati M., and Gehring C. A., Isolation and immunoaffinity purification of biologically active plant natriuretic peptide, Biochemical and Biophysical Research Communications, vol. 235, no. 3, pp. 722–725, 1997.

  126. Maryani M. M., Bradley G., Cahill D. M., and Gehring C. A., Natriuretic peptides and immunoreactants modify osmoticum-dependent volume changes in Solanum tuberosum mesophyll cell protoplasts, Plant Science, 2001, 161(3), 443–452.

  127. Rafudeen S., Gxaba G., Makgoke G. et al., A role for plant natriuretic peptide immuno-analogues in NaCl- and droughtstress responses, Physiologia Plantarum, 2003, 119(4), 554– 562.

  128. Pharmawati , Billington T., and Gehring C. A., Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent, Cellular and Molecular Life Sciences, 1998, 54( 3), 272–276.

  129. Matsubayashi Y., Ogawa M., Morita A., and Sakagami Y., An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine, Science, 2002, 296(5572),1470– 1472.

  130. Pearce G., Munske G., Yamaguchi Y., and Ryan C. A., Structure-activity studies of GmSubPep, a soybean peptide defense signal derived from an extracellular protease, Peptides, 2010, 31(12), 2159–2164.

  131. Yu , Moshelion M., and Moran N., Extracellular protons inhibit the activity of inward-rectifying potassium channels in themotor cells of Samanea saman pulvini, Plant Physiology, 2001, 127(3),1310–1322.

  132. Fletcher J. C., Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems, Science, 1999, 283(5409),1911–1914 .

  133. Ogawa M., Shinohara H., Sakagami , and Matsubayash Y., Arabidopsis CLV3 peptide directly binds CLV1 ectodomain, Science, 2008, 319(5861), 294.

  134. Strabala T. J., O’Donnell P. J., Smit A.M. et al., Gain-offunction phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain, Plant Physiology, 2006, 140( 4),1331–1344,

  135. Mishra, N.K.; Kumar, V.; Joshi, K.B. Fabrication of gold nanoparticles on biotin-ditryptophan scaffold for plausible biomedical applications. RSC Adv. 2015, 5, 64387–64394.

  136. Kracht, S.; Messerer, M.; Lang, M.; Eckhardt, S.; Lauz, M.; Grobty, B.; Fromm, K.M.; Giese, B. Electron Transfer in Peptides: On the Formation of Silver Nanoparticles. Angew. Chem. Int. Ed. 2015, 54, 2912–2916.

  137. Gulsuner, H.U.; Ceylan, H.; Guler, M.O.; Tekinay, A.B. Multi-domain short peptide molecules for in situ synthesis and biofunctionalization of gold nanoparticles for integrin-targeted cell uptake. ACS Appl. Mater. Interfaces 2015, 7, 10677–10683.

  138. Belser, K.; Slenters, T.V.; Ofumbidzai, C.; Upert, G.; Mirolo, L.; Fromm, K.M.; Wennermers, H. Silver nanoparticle formation in different sizes induced by peptides identified within split-and-mix libraries. Angew. Chem. Int. Ed. 2009, 48, 3661–3664.

  139. Tomizaki, K.Y.; Kubo, S.; Ahn, S.A.; Satake, M.; Imai, T. Biomimetic alignment of zinc oxide nanoparticles along a peptide nanofiber. Langmuir 2012, 28, 13459–13466.

  140. J. M. and Filice. M., Biosynthesis of Metal Nanoparticles: Novel Efficient Heterogeneous Nanocatalysts  Nanomaterials 2016, 6(5), 84

  141. Gholami-Shabani, M.; Shams-Ghahfarokhi, M.; Gholami-Shabani, Z.; Akbarzadeh, A.; Riazi, G.; Ajdari, S.; Amani, A.; Razzaghi-Abyaneh, M. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly approach. Process Biochem. 2015, 50, 1076–1085.

  142. Das, S.K.; Khan, M.R.; Guhab, A.K.; Naskar, N. Bio-inspired fabrication of silver nanoparticles on nanostructured silica: Characterization and application as a highly efficient hydrogenation catalyst. Green Chem. 2013, 15, 2548–2557.

  143. Cuenca, T.; Filice, M.; Palomo, J.M. Palladium nanoparticles enzyme aggregate (PANEA) as efficient catalyst for Suzuki-Miyaura reaction in aqueous media. Enzyme Microb. Technol. 2016, 95,242-247.

  144. Das, S.K.; Parandhaman, T.; Pentela, N.; Islam, A.K.M.M.; Mandal, A.B.; Mukherjee, M. Understanding the and catalytic activity of Pd, Pt, and Ag nanoparticles in hydrogenation and Suzuki coupling reactions at the nano_bio interface. J. Phys. Chem. C 2014, 118, 24623–24632.

  145. Colombo, M.; Mazzucchelli, S.; Collico, V.; Avvakumova, S.; Pandolfi, L.; Corsi, F.; Porta, F.; Prosperi, D. Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells. Angew. Chem. Int. Ed. 2012, 51, 9272–9275.

  146. Jang, J.S.; Kim, S.J.; Choi, S.J.; Kim, N.H.; Hakim, M.; Rothschild, A.; Kim, I.D. Thin-walled SnO2 nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules. Nanoscale 2015, 7, 16417–16426.

  147. Filice, M.; Marciello, M.; Morales, M.P.; Palomo, J.M. Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C–C bond formation and tandem catalysis. Chem. Commun. 2013, 49, 6876–6878.

  148. Stadelmann W. K., Digenis A. G., and Tobin G. R., Physiology and healing dynamics of chronic cutaneous wounds, The American Journal of Surgery, 176(2), supplement 1, pp. 26S–38S, 1998.

  149. Steed D. L., The role of growth factors in wound healing, Surgical Clinics of North America, 1997, 77( 3), 575–586.

  150. Simpson D. M. and Ross R., The neutrophilic leukocyte in wound repair a study with antineutrophil serum, Journal of Clinical Investigation, 1972, 51(8), 2009–2023.

  151. B. Witte and A. Barbul, General principles of wound healing, Surgical Clinics of North America, 1997, 77(3), 509– 528.

  152. Cooper D. M., Optimizing wound healing. A practice within nursing’s domain, Nursing Clinics of North America, 1990, 25(1), 165–180.

  153. Madden J. W. and Peacock E. E., Studies on the biology of collagen during wound healing. I. Rate of collagen synthesis and deposition in cutaneous wounds of the rat, Surgery, 1968, 64(1), 288–294.

  154. Bennett N. T. and Schultz G. S., Growth factors and wound healing: part II. Role in normal and chronic wound healing, The American Journal of Surgery, 1993, 166(1), 74–81.

  155. Chen C., Schultz G. S., Bloch M., Edwards P. D., Tebes S., and Mast B. A., Molecular and mechanistic validation of delayed healing rat wounds as a model for human chronic wounds, Wound Repair and Regeneration, 1999, 7(6), 486–494.

  156. Yager D. R., Chen S.M., Ward S. I., Olutoye O. O., Diegelmann R. F., and Cohen I. K., Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors, Wound Repair and Regeneration. 1997, 5(1), 23–32.

  157. Nandhini J, Neeraja P, Rajkumar SRJ, Umapathy V, Suresh S (2017) Comparative studies of microwave and Sol-Gel-assisted combustion methods of NiFe2O4 nanostructures: synthesis, structural, morphological, opto-magnetic, and antimicrobial activity. Journal of Superconductivity and Novel Magnetism 30(5): 1213-1220.

  158. Rai M, Yadav A, Gade A Silver nanoparticles as a new generation of antimicrobials. Biotechnology adv 2009, 27(1): 76-83.

  159. Mosae Selvakumar P, Antonyraj CA, Babu R, Dakhsinamurthy A, Manikandan N, et al. Green synthesis and antimicrobial activity of monodispersed silver nanoparticles synthesized using lemon extract. Synthesis and Reactivity in Inorganic Metal-Organic and Nano- Metal Chemistry 2016, 46(2): 291-294.

  160. Kiruba V. S. A., Dakshinamurthy A, Subramanian PS, Mosae Selvakumar P Green synthesis of biocidal silver-activated charcoal nanocomposite for disinfecting water. Journal of Experimental Nanoscience 2015, 10(7): 532-544.

  161. Deena S, Dakshinamurthy A, Mosae Selvakumar P Green Synthesis of Silver Nanoparticle Using Banana (Musa) Sap. Advanced Materials Research 2015, 1086: 7-10.

  162. Mariselvam R, Ranjitsingh AJA, Usha Raja Nanthini A, Kalirajan K, Padmalatha C, et al. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 2014, 129: 537-541.

  163. Arputha Kiruba VS, Dakshinamurthy A, Selvakumar PM Ecofriendly biocidal silver-activated charcoal nanocomposite: Application in water purification. Synthesis and Reactivity in Inorganic, Metal- Organic, and Nano-Metal Chemistry 2013, 43(8): 1068-1072.

  164. Kiruba VSA, Selvakumar PM, Dakshinamurthy A Biocidal Nano- Silver Reinforced Activated Charcoal in Water Treatment. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2015, 45(10): 1570-1575.

  165. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 2008, 4(3): 707-716.

  166. Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3(1): 95-101.

  167. Widgerow A. D., Nanocrystalline silver, gelatinases and the clinical implications, Burns, 2010, 36(7), 965–974.

  168. Liu X., Lee P. Y., Ho C. M. et al., Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing, Chem Med Chem, 2010, 5(3), 468– 475.

  169. Ai J., Biazar E., Jafarpour M. et al., Nanotoxicology and nanoparticle safety in biomedical designs, International Journal of Nanomedicine, 2011, 6, 1117–1127.

  170. Bhattacharya R, Mukherjee P Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 2008, 60(11): 1289-1306.

  171. Leu J.G., Chen S.A., Chen H.M., Wu W.M., Hung C.F . The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine 2012, 8(5): 767-775.

  172. Chen S.A., Chen H.M., Yao Y.D., Hung C.F., Tu C.S., et al. Topical treatment with anti-oxidants and Au nanoparticles promote , ealing of diabetic wound through receptor for advance glycation end-products. Eur J Pharm Sci 2012, 47(5): 875-883.

  173. Mariselvam R, Ranjitsingh A.J.A. , Padmalatha C, Mosae Selvakumar P Green Synthesis of Copper Quantum Dots using Rubia cardifolia Plant Root Extracts and its Antibacterial Properties. Journal of Academia and Industrial Research 2014, 3(4).

  174. Boateng J.S., Matthews K.H., Stevens H.N., Eccleston G.M. Wound healing dressings and drug delivery systems: a review. J Pharm Sci 2008, 97(8): 2892-2923.

  175. Bowler PG, Duerden BI, Armstrong DG Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001, 14(2): 244-269.

  176. Newman MD, Stotland M, Ellis JI The safety of nanosized particles in titanium dioxide-and zinc oxide-based sunscreens. J Am Acad Dermatol 2009, 61(4): 685-692.

  177. Sankar R, Dhivya R, Shivashangari KS, Ravikumar V Wound healing activity of Origanum vulgare engineered titanium dioxide nanoparticles in Wistar Albino rats. J Mater Sci Mater Med 2014, 25(7): 1701-1708.

  178. Khil M.S., Cha D.I., Kim H.Y., Kim I.S., Bhattarai N Electrospun nanofibrous polyurethane membrane as wound dressing. J Mater Sci Mater Med 2003, 67(2): 675-679.

  179. Wang C.C., Su C.H., Chen C.C. Water absorbing and antibacterial properties of N‐isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement. J Biomed Mater Res A 2008, 84(4): 1006-1017.

  180. Barnes C.P., Sell S.A., Boland E.D., Simpson D.G., Bowlin G.L. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Advanced drug delivery reviews 2007, 59(14): 1413- 1433.

  181. Chong E.J., Phan T.T., Lim I.J., Zhang Y.Z., Bay B.H., et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta biomater 2007, 3(3): 321-330.

  182. Drakonakis, Vasileios M, Velisaris, Chris N, Seferis, et al. Matrix hybridization in the interlayer for carbon fiber reinforced composites. Polymer Composites 2010 , 31(11): 1965-1976.

  183. Bosi S, Ballerini L, Prato M Carbon nanotubes in tissue engineering. In Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes. Springer Berlin Heidelberg 2013, 181-204.

  184. Schwentker A, Vodovotz Y, Weller R, Billiar TR Nitric oxide and wound repair: role of cytokines? Nitric oxide 2002, 7(1): 1-10.

  185. Louis J.I Nitric oxide: biology and pathobiology. Academic press.2000, 1017.

  186. Williams DLH A chemist’s view of the nitric oxide story. Organic & biomolecular chemistry 2003, 1(3): 44-449.

  187. Chen W.Y., Chang H.Y., Lu J.K., Huang Y.C., Harroun S.G., et al. Self‐Assembly of Antimicrobial Peptides on Gold Nanodots: Against Multidrug‐Resistant Bacteria and Wound‐Healing Application. Advanced Functional Materials, 2015, 25(46): 7189-7199.

  188. Ou J. L., Mizushina Y, Wang, S.Y., Chuang D.Y., Nada M, et al. Structure–activity relationship analysis of curcumin analogues on antiinfluenza virus activity. The FEBS journal 2013, 280(22): 5829-5840.

  189. Chereddy K.K., Coco R., Memvanga P.B., Ucakar, B., des AR, et al.. Combined effect of PLGA and curcumin on wound healing activity. Journal of controlled release 2013, 171(2): 208-215.

  190. Hurlow J. and Bowler P. G., Clinical experience with wound biofilm and management: a case series, Ostomy Wound Management 2009, 55(4), 38–49.

  191. Qadan M. and Cheadle W. G., CommonMicrobial Pathogens in Surgical Practice, Surgical Clinics of North America, 2009, 89(2), 295–310.

  192. Walker, M. R.; Patel, K. K.; Stappenbeck, T. S. The stem cell niche. J. Pathol. 2009, 217, 169−180.

  193. Blanpain, C.; Lowry, W. E.; Geoghegan, A.; Polak, L.; Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004, 118, 635−648.

  194. Ma, K.; Liao, S.; He, L.; Lu, J.; Ramakrishna, S.; Chan, C. K. Effects of nanofiber/stem cell composite on wound healing in acute full-thickness skin wounds. Tissue Eng., Part A 2011, 17, 1413−1424.

  195. Metcalfe, A. D.; Ferguson, M. W. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc., Interface 2007, 4, 413−437.

  196. Kalashnikova, I.; Das, S.; Seal, S. Nanomaterials for wound healing: scope and advancement. Nanomedicine 2015, 10, 2593−2612.

  197. Chen, S.-A.; Chen, H.-M.; Yao, Y.-D.; Hung, C.-F.; Tu, C.-S.; Liang, Y.-J. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur. J. Pharm. Sci. 2012, 47, 875−883.

  198. Chen, W. Y.; Chang, H. Y.; Lu, J. K.; Huang, Y. C.; Harroun, S. G.; Tseng, Y. T.; Li, Y. J.; Huang, C. C.; Chang, H. T. Self-Assembly of Antimicrobial Peptides on Gold Nanodots: Against Multidrug- Resistant Bacteria and Wound-Healing Application. Adv. Funct. Mater. 2015, 25, 7189−7199.

Published
2019-03-22
How to Cite
[1]
D. Nath, P. Banerjee, A. Ray, and B. Bairagi, “Green Peptide–nanomaterials; A Friendly Healing Touch for Skin Wound Regeneration”, Adv. Nan. Res., vol. 2, no. 1, pp. 14-31, Mar. 2019.
Section
Review Article