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AB S T R A CT  

During recent years, a plethora of pioneering radiolabeled nanoparticles have grown to be an 

integral part of nuclear medicine as theranostic tools. Herein, we focus on the most 

representative examples of nanoparticles of the past decade, which have been investigated in 

conjunction with radioisotopes aiming to serve as drug delivery or imaging agents. The 

present review highlights the key attributes of each nanosystem and the following 

classification of radiolabeled nanovehicles is based on increasing mass number (A) of 

radioisotopic elements.  
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1 Introduction  

Cancer is a generic term for a large group of diseases characterized by the uncontrolled growth and spread 

of abnormal cells, caused by an interaction between external factors and mutations on a molecular level, 

both of which are yet to be fully understood. Certain types of cancer along with stroke, ischaemic heart and 

respiratory diseases are classified by the World Health Organization (WHO) in the top 5 of leading causes 

of morbidity and mortality worldwide for the year 2015 [1]. According to the last report of “Globocan 

Project” of the International Agency for Research on Cancer (IARC) of WHO, 14.1 million new cancer 

cases, 32.6 million people living with cancer and 8.2 million deaths worldwide were estimated for the year 

2012 [2]. The number of new cases is estimated to reach the staggering number of 23.97 million over the 

next 2 decades. According to deaths recorded in 2015 and by simple calculations, approximately 17 people 

per minute succumb to this devastating disease worldwide.  

In the last decades, a considerable number of scientific disciplines and especially nanomedicine have 

flourished due to the emergence of advanced novel nanomaterials. Therapeutic and diagnostic tools based 

on nanotechnology have come to bring the revolution in current medical practice and the solution to 

problems that remain still unsolved. Due to the need of dealing with medical issues, such as cancer, 

nanoparticles have gained tremendous interest. The main role of a nanocarrier is targeted delivery of a drug 

directly into the ailing area, preventing the undesired side-effects of conventional medicines and their 

uncontrolled biodistribution. Since tumors and metastases are highly heterogenous, efficacy of 

nanomedicines has significant intra-individual difference. Various surface functionalization methods have 

been devised to influence advantageous features of nanoplatforms. In some cases, nanoparticles offer the 

possibility of additional active targeting methods by conjugating a peptide or an antibody fragment, as well 

as improved therapeutic effect by combining several different methods: chemotherapy; radioisotope 

therapy (RIT); magnetic hyperthermia (MHT); photodynamic therapy (PDT); photothermal therapy (PTT). 
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Alternative methods of treatment include surgery, radiation, chemotherapy, hormone therapy, immune 

therapy, and targeted therapy. 

Radioisotopes have grown to be an integral part of the field of medical applications both for purposes of 

drug development and now diagnostic and therapeutic applications. Multivalency provides NPs with the 

required flexibility to enable the utilization of radioisotopes in novel applications. Careful construction and 

evaluation of these NP probes using nuclear imaging methods provides considerable insight into their in 

vivo fate and their prospective utility in research and clinical application. Convergence of radiolabeling with 

the cornucopia of NPs for imaging and therapy has resulted in many particles capable of multimodal 

imaging. For cancer diagnosis, the list of imaging modalities includes Magnetic Resonance Imaging (MRI), 

Computed Tomography (CT), Positron Emission Tomography (PET), Single Photon Emission Computed 

Tomography (SPECT), Optical Imaging (OI) and Cerenkov Luminescence (CL). A very useful imaging 

tool for clinical oncology is also the fused form of nuclear and anatomical images from CT and SPECT 

(SPECT/CT) or PET (PET/CT) into a single device. Molecular imaging of cancer is crucial, therefore 

almost every permutation of the various imaging modalities in combination with nanoparticle carriers is 

actively investigated. Recent advances in tumor imaging technology has opened the possibility of early 

detection of the disease, resulting in a more successful way of treatment. The most recent literature is 

mentioned, providing a classification of radiolabeled nanovehicles based on increasing mass number (A) of 

radioisotopic elements.     

2 Radiolabeled Materials 

2.1 Carbon-11 

A strategy for labeling different nanoplatforms via covalent bonding with 11C, in order to develop a useful 

tool for PET and MR imaging, was reported by Sharma et al (2013). In their study, they examined 

nanoparticles appropriately functionalized with amine (-NH2) and carboxylic acid (-COOH) groups and 

more precisely iron oxide nanoparticles (IONPs), and platinum and silicon dioxide nanoparticles. It was 

proved that all functionalized nanoconstructs could bond efficiently with the radioisotope and provide 

sufficient radioactivity to perform PET imaging and biodistribution studies [3].   

2.2 Fluorine-18 

Inorganic materials like hydroxyapatite (HA) and aluminium hydroxide (Al(OH)3) have been used to 

efficiently provide labeled radiotracers with [18F]-fluoride for in vivo imaging. These radiotracers, which 

demonstrated different in vivo behavior depending on the route of administration, were monitored by PET 

imaging and showed uptake in the joints of the skeleton. Once further modified, these nanoparticles could 

lead to targeted contrast agents with lower in vivo aggregation and uptake in the RES organs [4].  

Gold nanoparticles, functionalized with peptides and bonded covalently to N-succinimidyl-4-[18F]-

fluorobenzoate ([18F]-SFB), have been synthesized. Their in vivo biodistribution was assessed and high 

accumulation in the bladder and urine, and low intestinal uptake were demonstrated. Ex vivo biodistribution 

revealed accumulation in the RES organs which could be due to the negative surface charge of the 

nanoparticles, resulting in phagocytisis by macrophages of these organs [5]. A fast and simple strategy of 

radiolabeling and coating magnetic nanoparticles was introduced by Sun Z. et al (2016). A polymer coating 

made of polyacrylic acid (PAA) and oleylamines and the chelator S-2-(4-aminobenzyl)-1,4,7-

triazacyclononane-1,4,7-triacetic acid (p-NH2-Bn-NOTA) were applied, rendering these IONPs efficient 

PET/MR imaging probes [6]. 18F-labeled dipalmitoyl [18F]-FDP liposomes were reacted with tumor tissues, 

demonstrating increased uptake. The reaction between tetrazine and trans-cyclooctenes was exploited in 

order to attain the rapid delivery of biorthogonal tetrazine radiolabeled lisposomes to tumors, in relation to 

liposomes without the tetrazine label [7].         

Labeling strategies of polymeric nanoparticles with 4-[18F]fluorobenzyl-2-bromoacetamide ([18F]FBBA) 

were investigated and based on the rationale of radiolabeling a precursor block-copolymer and then 

incorporating it as constituent element onto other polymeric nanoparticles. Three different approaches 
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were tried; two of them consisted of two different radiolabeled block-copolymers, while the third one 

utilized [18F]FBBA entrapped in the complex. All strategies included a targeting AGBBB015F (15F) peptide, 

grafted onto the NP surface. Biodistribution profiles and PET/CT imaging were evaluated in tumor-

bearing rodents, and exhibited low accumulation in the liver and renal excretion in principal [8]. A very 

recent study investigated the possibilities offered by an organosilicon fluoride acceptor (SiFA) in 

conjunction with the synthesis of polymeric core-shell nanoparticles. In this study, nanoparticles of four 

distinct sizes were synthesized, functionalized and radiolabeled using a very facile and easily repeated 

method, without additional chemical modification. The nanosystems with a hydrodynamic diameter of 

33nm exhibited the best results in EMT6 tumor-bearing mice [9].  

2.3 Copper-64 

Liposomes of various sizes were synthesized, doped with 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC) which was functionalized with the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 

(DOTA) chelator for 64Cu labeling and evaluated as potential PET radiotracer for bone marrow imaging. 

Higher accumulation in the bone marrow was revealed for the smaller-sized liposomes in comparison to 

larger-sized ones, at 24 h post-injection. Tumor accumulation in animal models was unequivocally smaller 

than accumulation in the bone marrow [10]. Furthermore, Lee H. et al (2015) developed another method 

for 64Cu radiolabeling via the gradient loadable chelator 4-DEAP-ATSC encapsulated into PLD (liposomal 

doxorubicin (DOX) decorated with polyethylene glycol chains) and PLD targeted with HER2. In vitro as 

well as in vivo stability studies exhibited high stability up to 48h (>99%) and 24h (>94%) respectively. 

PET/CT imaging in BT474-M3 xenografts substantiated the use of these radiolabeled nanoparticles as PET 

tracers for in vivo liposome tracking [11]. A more recent study utilized DOX-loaded liposomes capable of 

PET and NIFR imaging after conjugation with 64Cu and IRDye800CW respectively. A PD-1 (programmed 

cell death-1) monoclonal antibody was also added onto this nanoconstruct, enabling 4T1 tumor 

visualization and treatment [12]. Lipid nanoparticles (LNPs), containing a distearoyl phosphatidyl 

ethanolamine monomethoxy polyethylene glycol (DSPE-PEG)-maleimide co-polymer, were assembled and 

covalently linked to an anti-prostate membrane antigen (PSMA) single chain (scFv) antibody with cysteine, 

enabling active targeting. Later on, the DOTA chelator was added to offer radiolabeling with 64Cu. Through 

this research, it was proved that scFv antibodies could be utilized as therapeutic tools due to their potential 

of conjugation with nanoparticles as they offered enhanced anti-tumor targeting [13].  

Pang B. et al (2015) designed PdCu tripods with a conformal Au shell. This well-structured platform was 

radiolabeled by substitution of some of the Cu particles of the core with the radioactive counterpart. After 

conjugation with D-Ala1-peptide T-amide (DAPTA), the tripods could serve as an efficient platform for 

PET imaging and photothermal treatment for triple negative breast cancer (TNBC) with enhanced 

anticancer properties, as proved by the in vivo results [14]. In another study, a controllable layer of gold 

nanoparticles was used to encapsulate 64Cu ions, using a chelator free process. The highly stable construct 

was studied in vivo with PET imaging in tumor-bearing animal models with three different coatings (1-

dodecanethiol and Tween 20; MeO-PEG5000-SH; and sodium 10-mercaptodecane-sulfonic acid and (10-

mercaptodecyl)trimethylammonium bromide)), resulting in PEG-coated Au nanoparticles which 

demonstrated longer circulation time and enhanced tissue uptake compared to the other two coatings 

examined [15]. Radiolabeled Au nanorods have also been used to study in vivo kinetic behavior with regard 

to their size. These nanorods are delivered to the tumorous site via the enhanced permeability and retention 

(EPR) effect [16]. Nanoclusters (NCs) have also started to be thoroughly investigated in cancer diagnostics, 

as was the case when Zhao Y. et al (2017) utilized Au NCs for breast cancer and metastasis recognition. 

Targeting of the overexpressed CXCR4 receptor and consequent PET imaging was possible after doping 

with 64Cu and functionalizing the AuNCs with plerixafor. Eventually the pharmacokinetics of these 

complexes were assessed, and high sensitivity and accuracy in early-stage tumor detection was reported [17]. 

Glycol chitosan nanoparticles (CNPs) were synthesized with a copper-free click chemistry method aiming 

to prove that such a method would facilitate a preradiolabeling pathway for the in vivo assessment of 
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radiolabeled nanoparticles. Following this synthetic pathway, a DCBO-PEG4-Lys-DOTA-64Cu complex 

was formed, where dibenzyl cyclooctyne (DBCO) was conjugated to a DOTA chelator for labeling with 
64Cu, which was then incubated with azide-functionalized CNPs, resulting in their successful radiolabeling 

at high radiochemical yields [18].    

Silica nanoparticles, functionalized with a soft electron-donating thiol group, were synthesized by Shaffer 

et al (2016) in order to achieve a thermodynamically stable bond with 64Cu without chelation and expand 

their application of silica NPs in molecular imaging using both hard and soft radiometal ions [19]. 

A common strategy for the development of radiolabeled superparamagnetic iron oxide nanoparticles 

(SPIONs) is the direct labeling of their inorganic surface with an agent that binds to its surface as well as 

with the isotope without affecting the polymeric coating. In this regard, a bisphosphonate agent was 

modified to contain dithiocarbamate and served as a chelator for the binding with 64Cu and consequent 

binding to SPIONs, namely the commercially available Endorem/Feridex. In vitro studies demonstrated 

sufficient binding for at least 48h, while PET-CT and MRI studies revealed uptake in the popliteal lymph 

nodes and the iliac lymph nodes, to a lesser extent [20]. In another study, SPIONs utilized as vehicles for 

an anticancer agent (doxorubicin) via a pH-sensitive bond were decorated with PEG chains, the cyclo(Arg-

Gly-Asp-D-Phe-Cys) peptide (c(RGDfC)) for tumor targeting and 1,4,7-triazacyclononane-N,N’,N’’-

triacetic acid (NOTA) chelator for radiolabeling. This approach resulted in a cytotoxic nanocarrier capable 

of PET and MR imaging by efficiently targeting ανβ3-expressing tumors [21]. 

Radiolabeled graphene oxide (GO) nanoparticles were exploited as imaging agents as well as drug delivery 

vehicles in breast cancer lung metastasis animal models. Radiolabeling was accomplished via a NOTA 

chelating agent, while a monoclonal antibody (mAb) was used to drive these carriers to the follicle-

stimulating hormone receptor (FSHR). DOX was sufficiently loaded to the carriers and successfully 

delivered to tumorous sites, in contrast with the untargeted NPs [22]. Manganese oxide nanoparticles 

(Mn3O4) could be useful diagnostic tools for PET and MR imaging. Similarly to the GO NPs mentioned 

above, the Mn3O4 nanoparticles were coated with PEG, labeled with 64Cu via the NOTA chelator and 

actively targeted with the addition of the TRC105 antibody. The enhanced targeting specificity of the 

nanocomplex towards 4T1 breast cancer was advocated by all the experimental results of this study [23].    

2.4 Gallium-68 

AGuIX are ultrasmall (diameter <5nm) rigid multimodal imaging platforms constituted of a polysiloxane 

matrix scaffold labeled with both gadolinium (Gd3+) and 68Ga via adequate chelators, which could serve as 

a PET/MR imaging agent. Initial work with DOTA as the chelating agent showed promising results, as 

residual activity on all untargeted tissues was extremely low. The initial encouraging results led Truillet et al 

(2015) to functionalize these NPs with chelators such as DOTAGA (1,4,7,10-tetraazacyclododecane-1-

glutaric anhydride-4,7,10-triacetic acid) [24] and NODAGA (2,2’-(7-(1-carboxy-4-((2,5-dioxopyrrolidin-1-

yl)oxy)-4-oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid)) [24], [25], for improved radiolabeling. It was 

demonstrated that a single-injection with 68Ga-AGuIX@NODAGA nanoparticles could provide a dual-

modality imaging agent adequate for both PET and MRI.     

Small-sized gold nanoparticles (2nm) were coated with glucose and conjugated with the NOTA chelating 

agent for further radiolabeling with 68Ga. The aim of this nanosystem was to explore the blood brain barrier 

permeability (BBB) with PET imaging. Therefore, targeted and non-targeted systems were prepared in the 

presence or absence of BBB-permeable neuropeptides. A 3-fold higher brain accumulation of the targeted 

AuNPs was shown by the in vivo biodistribution studies [26]. Iron Oxide nanorods, coated with silica and 

various ratios of PEG and DOTA chelator were assessed as potential PET/MR imaging agents. All silica 

coated iron oxide nanorods formed highly stable radiolabeled complexes, both with and without chelator. 

Furthermore, it was shown that PEG-coated nanorods were also capable of direct radiolabeling within 15 

minutes of incubation with 68Ga, with high in vivo stability, suitable for PET/MR imaging of liver 

malignancies [27]. In the same direction, Moon S.H. et al (2016), encapsulated iron oxide nanoparticles with 

three amphiphiles containing PEG, the DOTA chelator for 68Ga radiolabeling and the prostate-specific 
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membrane antigen (PSMA) for tumor targeting. MR imaging studies resulted in uptake by only PSMA 

positive tumor cells in dual-tumor animal model, which was also confirmed by PET imaging [28]. Another 

dual-modality imaging probe was devised from the same group for the targeting of lymph nodes, with 

encapsulation of IONPs in amphiphiles containing NOTA and D-mannose, the specificity of which was 

confirmed with PET and MR imaging [29].  

Graphene oxide (GO) nanosheets were hybridized with 68Ga-magnetite (Fe3O4) NPs, forming a 

radiolabeled magnetic graphene oxide (MGO) nanocomposite that can be applied as a drug delivery system. 

No detachment of 68Ga from the complex was shown in in vitro stability studies, while in vivo biodistribution 

studies revealed high uptake by vital organs and fast clearance from the kidneys, as well as reduced NP 

uptake by the RES organs, which can be attributed to GO grafting of magnetite NPs. Consequently, 68Ga-

MGO could serve as promising agent for PET imaging [30]. In the aim of assessing porous zirconia NPs 

as drug delivery nanoplatforms, these were functionalized with the DOTA chelator and consequently 

radiolabeled with 68Ga at high radiolabeling yields. In vitro studies demonstrated a very stable radiolabeled 

complex while μPET/CT results showed higher uptake of the NPs in the RES organs, low uptake in the 

lungs indicating the lack of aggregates, extended blood retention times and slow kidney clearance [31].    

2.5 Arsenic-71, 72, 74, 76 

Although As radioisotopes are not widely used because of limited availability and difficulties related to their 

production, separation and purification of the radioisotopes [32], Chen F. et al (2013) employed a simple, 

chelator-free and efficient protocol to synthesize *As-radiolabeled SPIONs functionalized with a layer of 

oleic acid (OA) surfactant which was later replaced by poly(acrylic acid) (PAA), leading to higher stability 

of the NPs in biological solutions. Further coating with PEG made the system more stable, showing high 

liver uptake and significantly decreased bladder uptake, results also confirmed by PET imaging [33].  

2.6 Zirconium-89 

In the study of Karmani et al, gold nanoparticles with a mean size of 5nm were functionalized with the 

monoclonal antibody cetuximab, which was first radiolabeled with 89Zr via a desferal moiety. The team used 

a new method for the synthesis, compared the biodistribution before and after the coupling reaction and 

evaluated quantitive PET imaging performance of the complexes. In vitro studies showed that all conjugates 

were stable, while in vivo distribution showed no alteration in tumor uptake between the conjugated and 

unconjugated cetuximab, indicating that 89Zr-labeled cetuximab-targeted nanoparticles preserved their 

tumor targeting properties [34]. Ultra-small paramagnetic iron oxide nanoparticles (USPIOs) were 

developed to create stable and chelate-free radiolabeled complexes using a novel reaction process. 89Zr was 

bound to the surface of the magnetite core, through ionic interactions of the opposite charges between the 

metal ions and the surface layer, resulting in radiolabeling yields over 90%. PET/CT imaging studies were 

performed, confirming the ability of these nanoplatforms to be radiolabeled with other radioisotopes (i.e. 
64Cu2+, 89Zr4+, 111In3+) under the same radiolabeling conditions [35]. In another study, ferumoxytol was 

linked to the desferrioxamine chelate (DFO) and radiolabeled with 89Zr, in order to acquire a tool that could 

combine PET and MR imaging for the enhanced detection of lymphatic drainage [36].   

Imaging of the lymphatic drainage with PET and MRI was also the objective of a recent study, where metal 

oxide (MxOy) nanoplatforms were coated with PEG and radiolabeled with a chelator-free process. They 

developed constructs with 10 different types of MxOy and selected the gadolinium (Gd) containing 

nanoplatform for further testing [37]. Nanoscale metal-organic frameworks (nMOF) materials were 

investigated as drug delivery vehicles capable of fluorescent and PET imaging for negative breast neoplasia. 

These octahedron-shaped nanocarriers were labeled with 89Zr, decorated with pyrene-derived polyethylene 

glycol (Py-PGA-PEG) chains, actively targeted with F3 ligand and loaded with DOX. The results were 

encouraging as there was no toxicity referred to the experimental murine models [38].  

A chelator-free system of radiolabeled mesoporous silica nanoparticles (MSN) was presented attaining a 

long-term in vivo stability of more than 20 days. Both radiolabeling and in vivo stability appeared to be 
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interwoven with the presence of deprotonated silanol groups (-Si-O-) inside or on the surface of the 

nanoparticles. The conclusion of this study was that 89Zr-MSN could be a useful tool for tracking the in vivo 

fate and PET imaging of drug delivery systems [39]. Yet another 89Zr PET tracer was developed by 

radiolabeling ultrasmall fluorescent silica nanoparticles (C dots) using two pathways: a chelator-free 

radiolabeling method and a DFO chelating agent. Both nanoplatforms had an integrin-targeting peptide 

(cRGDY) attached and were coated with PEG. Their stability, pharmacokinetics and uptake were 

investigated in human melanoma models with encouraging results [36].       

Liposomal nanoparticles were developed and efficiently radiolabeled with 89Zr using a ligand exchange 

reaction. Three versatile vehicles encapsulating desferrioxamine (DFO) were produced, all with high 

radiochemical yields, one of which was PEGylated while the other one was actively targeted with the aid of 

folic acid (FA). Comparative studies pertaining to their stability, cell uptake and in vivo pharmacokinetics 

were performed [40]. 

Truillet et al (2016) described the synthesis of AGuIX nanoparticles functionalized with DFO, which were 

radiolabeled with 89Zr at high yields (~99% yield), in order to evaluate the magnitude and pharmacokinetics 

of the long-lived radioisotope within the tumor microenvironment through in vitro, in vivo and PET imaging 

studies [41].  The group of Groult H. et al (2015) performed very extensive research pertaining to the facile 

functionalization of 3 different types of nanoparticles, using a modular approach and exploiting the high 

versatile and binding capabilities of bovine serum albumin (BSA). IONPs, upconverting nanophosphors 

and Au nanospheres were used in this study in conjunction with various chelating agents appropriate for 

the conjugation either with 68Ga or 89Zr. Finally, the IONPs functionalized with BSA and modified with 

DFO were the chosen platform for further investigation. This nanoconstruct was then conjugated to RGD 

peptide and labeled with 89Zr to offer PET/CT and MR imaging capabilities [42].  

2.7 Yttrium-90 

For therapeutic purposes, 90Y was used to radiolabel magnetic (Fe3O4) nanoparticles with or without a 

poly(ethylene glycol) 600 diacid coating. The PEG-coated nanoparticles exhibited excellent in vitro stability 

and lower uptake in the lungs compared to the naked magnetic nanoparticles. The latter could be attributed 

to the presence of poly(ethylene glycol), which is an inhibitory factor of agglomeration of MNPs in vivo [43].  

Magnetic microspheres, coated with citric acid and encapsulated with human serum albumin were produced 

for application in bimodal radioisotope and hyperthermia cancer treatment. These nanoplatforms were 

radiolabeled with 90Y using a chelator-free protocol, and provided high in vitro stability and sufficient heating 

efficiency in order to induce cell apoptosis [44]. 

2.8 Technetium-99m 

Curcumin-loaded solid lipid nanoparticles were used to circumvent the low solubility and consequently the 

low bioavailability of curcumin, which is of particular value due to its anti-oxidant and anti-carcinogenic 

properties. Liver-spleen imaging with this nanosystem was found to be advantageous and potentially 

therapeutic [45]. Lipid nanocarriers were also developed by Ucar E. et al (2016), who loaded them with 

paclitaxel (PTX) and radiolabeled them using the 99mTc(CO)3
+ moiety. Active targeting of folate-expressing 

tumors was efficiently achieved by surface modification with a folate derivative, as proved by the in vivo 

animal studies [46].    

Almost a decade ago, poly(lactic-co-glycolic acid) (PLGA-based nanoparticles labeled with 99mTc in a direct 

approach were developed, in order to cross the Blood Brain Barrier (BBB). These constructs showed 

promising results when loaded with chloramphenicol (CHL) and decorated with polysorbate-80 (PS-80) 

surfactant, as uptake in the brain was higher than that in the bone marrow [47]. The group of Subramanian 

et al (2010) directly radiolabeled PLGA nanoparticles, utilizing SnCl2 as the reducing agent, and investigated 

their application in sentinel lymph node detection (SLND), showing localization in the SLN, albeit lower 

than the uptake observed for the commercially available for SLN detection radiopharmaceutical Nanocis 

[48]. A few years later, the same group utilized the PLGA nanoparticles mentioned above in two different 
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ways, one by encapsulating mebrofenin in situ and another by conjugating p-aminobenzyl diethylenetriamine 

pentaacetic acid (p-NH2-Bz-DTPA). The latter functionalization led to improved radiolabeling yields under 

milder reaction conditions and improved uptake in the SLN [49]. A common palliative treatment for bone 

metastasis with satisfactory results is the use of ethylenediamine-tetramethylenephosphonic acid (EDTMP) 

labeled with the radioisotope 153Sm. The conjugation of this acid with polymeric nanoparticles consisting 

of polylactic acid (PLA) and polyvinyl alcohol (PVA) was designed in an attempt to overcome the 

drawbacks of 153Sm-EDTMP. Indeed, biodistribution analyses conducted on these nanoparticles, after their 

radiolabeling with 99mTc, came to prove this theory, as increased accumulation of these 99mTc-

PLA/PVA/EDTMP complexes in osseous tissues was observed [50]. 

Gold nanoparticles were also developed as potential SLN imaging agents which remained within the first 

lymph node for 24h, with negligible uptake in all other tissues and minimal accumulation in the kidney [51]. 

This was pursued by conjugating Au nanoparticles to the hydrazinonicotinamide-Gly-Gly-Cys-NH2 

(HYNIC-GGC) peptide, a thiol-triazole-mannose derivative and EDDA/tricine coligand. Furthermore, in 

order to achieve GRP-r imaging, gold NPs were functionalized with Lys3-bombesin and radiolabeled with 
99mTc. Biodistribution studies showed maximum tumor uptake of the radiotracer at 1h post-injection [52]. 

The above results encouraged Ocampo-Garcia et al (2011) to formulate a kit for facile labeling of AuNPs 

conjugated to Lys3-bombesin, cyclo[Arg-Gly-Asp-D-Phe-Lys-(Cys)] or thiol-mannose, which is important 

as the development of such kits could be a useful tool for the preparation of radiolabeled NPs used for 

target-specific applications in the clinic [53]. The most recent study on Au nanoparticles radiolabeled with 
99mTc radioisotope was conducted by Zhao L. et al (2018), who entrapped the nanoparticles in 

polyethylenimine (PEI) so as to obtain a dual-modality imaging probe. PEI offered versatility for further 

conjugation with the DTPA chelator and a PEG monomethyl ether, aiming to improve the properties of 

the nanoconstruct, namely stability, biocompatibility and imaging performance in SPECT/CT imaging of 

lymph nodes and other organs [54].  

Ultra-small paramagnetic iron oxide nanoparticles were prepared along with a PEG polymer conjugate 

containing a terminal 1,1-bisphosphonate (BP) group, resulting in stealth and stable nanoparticles with 

enhanced properties. In vivo studies revealed a strong T1-effect, making them effective as MRI contrast 

agents at high magnetic fields, as well as SPECT imaging due to 99mTc, rendering them suitable agents for 

multimodal imaging [55]. For the same purpose, SPIONs were coated with dextran and radiolabeled with 
99mTc using SnCl2 as the reducing agent. The effect of different modes of administration (intravenous or 

intra-arterial) as well as the localization of the tumor sites with or without the addition of Lipiodol, were 

investigated. Finally, intra-arterially delivered complexes with Lipiodol demonstrated enhanced results 

against liver tumor [56]. Another dual-modality imaging agent was developed from radiolabeling iron oxide 

nanoparticles linked to cRGDfK-Orn3-CGG (an RGD peptide derivative) and functionalized with 3-

aminopropyltriethoxysilane (APTES), for targeting U87MG glioblastoma cells in animal models. The 

radiolabeled construct was proved to be a highly stable complex in vitro, which had the ability to reach 

satisfying ablative temperatures in vivo. These RGD-targeted nanoparticles demonstrated enhanced 

accumulation in tumor sites with negligible accumulation in other organs [57]. The properties of magnetic 

and gold nanoparticles, once combined, could lead to enhanced dual-modality probes. This was the basic 

idea behind the work of Felber et al (2015), who developed gold containing magnetite (Fe3O4) nanoparticles. 

The metal surface consisted of an anchor for Au, bifunctional ligands and chelating agents for the 

[99mTc(CO)3]+ moiety. The synthesis was approached in two different pathways, both of which showed 

promising results [58]. 

Silica nanoparticles could prove to be an efficient platform both for dual-imaging applications and targeted 

delivery of anti-tumor agents. This type of nanosystem was developed when polyamidoamine (PAMAM) 

was grafted onto silica nanoparticles, which were thereafter conjugated with fluorescent dye (indocyanine 

green (ICG)), loaded with 99mTc and functionalized with an anti-HER2 antibody, which provided sufficient 

targeting capabilities as shown by in vitro and in vivo studies [59]. An effort was made to develop 

radiolabeled mesoporous silica nanoparticles (MSNs) as imaging agents, with the functionalization of the 
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nanoparticles with 3-aminopropyltriethoxysilane (APTES) and diethylenetriaminepentaacetic acid (DTPA). 

Results demonstrated the expected high uptake by liver and especially high specificity for the lung. Given 

the fact that MSNs are able to carry a significant drug load at the same time, they could also be potential 

theranostic agents [60]. A structure consisting of manganese oxide (MnOx) within the mesopores of MSNs, 

which was also loaded with doxorubicin, was designed and evaluated as a probe for both hybrid SPECT-

MR imaging but also as a therapeutic tool [61].  In another study based on MSNs, two strategies were tested. 

In the first strategy, safranin O was loaded onto the pores of the nanoparticles and the MSNs were 

functionalized with APTES. Then they proceeded to the addition of MUC1 aptamer, which enables 

targeted delivery to MDA-MB-231 cells. The second strategy was on the same track as the one mentioned 

before, only doxorubicin was used instead of safranin O, with considerably increased cytotoxic effects. The 

safranin O loaded complexes, were also radiolabeled with 99mTc demonstrating enhanced specificity and 

internalization, after intraocular administration in MDA-MB-231 tumor-bearing mice [62].  

Liposomes radiolabeled with diagnostic radioisotopes can be excellent tools for studying the 

pharmacokinetics of liposome-based drug delivery systems, as was the case with liposomes labeled with 
99mTc(I)(CO)3. Radiolabeling techniques and their effect on the biodistribution were explored, namely direct 

labeling via a carboxyl group and chelation via a pyridyl ethyl cysteine compound. It was shown that both 

systems exhibited passive tumor accumulation [63]. 

Self-assembled nanoparticles were prepared with chitosan and folated poly-γ-glutamic acid and directly 

labeled with 99mTc. In vitro results showed efficient internalization by tumor cells while in vivo studies revealed 

improved uptake in the tumorous kidney when compared to the normal one, as well as enhanced contrast 

in SPECT and SPECT/CT tumor imaging [64]. Dendrimers were synthesized, functionalized with folic 

acid and radiolabeled with 99mTc via a chelating agent by Zhang et al (2010) with a radiochemical yield up 

to 98.9%, excellent in vitro and in vivo stability, rapid blood clearance and specific tumor accumulation [65]. 

The same group next reported on the synthesis of a dendrimer initially reacting with biotin, which was 

further reacted with avidin. Both resulting species were efficiently radiolabeled with 99mTc and 

comparatively evaluated in vitro in HeLa cells. As the cellular uptake was much higher for the avidin 

conjugate, consequent in vitro and in vivo were performed only for this construct [66].     

Generation 2 (G2) PAMAM dendrimer-entrapped gold nanoparticles, radiolabeled via chelation and 

modified with folic acid (FA) or RGD peptide, were devised by Li et al (2016) and Xu X. et al (2017) 

respectively [67], [68]. The chelating agents used in each study were the linear chelate DTPA and and the 

cyclic chelate NOTA, which were conjugated onto the surface of the dendrimers, enabling 99mTc to bind, 

thus rendering both nanoprobes suitable for SPECT and CT imaging. 

2.9 Indium-111 

In a facile and robust method developed by Laan et al (2016), tropolone and 111In were entrapped in the 

core of micelles, without the surface conjugation of the chelator that might lead to altered biological 

behavior and compromised stability. Ex vivo biodistribution studies in healthy mice demonstrated high liver 

and spleen accumulation and significant blood circulation even at 24h post-injection [69]. Micelles cross-

linked with pluronic unimers and more specifically poly(ethylene oxide) and poly(propylene oxide) (PEO-

PPO-PEO), and radiolabeled with 111In via DTPA, were studied with respect to in vivo biodistribution using 

SPECT. The effecr of PEO block length on renal clearance and overall liver uptake, as well as the influence 

of the aggregation state on long term accumulation in the liver, were investigated [70].   

Gold nanoparticles have been used for the molecular targeting of low- and high-ανβ3 integrin-expressing 

tumors. Although the radiolabeling with 111In was achieved without surface functionalization with metal 

chelators, biodistribution and imaging studies demonstrated a stable radiolabeled nanoparticle [71]. The 

tumoricidal properties of gold nanoparticles after coating with PEG, further linked to trastuzumab and 
111In via DTPA chelation, were investigated. Intratumoral administration in overexpressing HER2-positive 

breast cancer animal models demonstrated efficient internalization, halting tumor growth as well as inducing 

DNA double strand breaks (DSB), thereby reducing the surviving fraction of cancer cells [72]. Song L. et al 
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(2016) proposed an easy protocol to radiolabel Au nanoparticles targeting epidermal growth factor receptor 

(EGFR) positive tumors 111In with via the DTPA chelator [73].  

Superparamagnetic iron oxide nanoparticles were used for the development of bioprobes for early diagnosis 

of cancer. Conjugation with 111In-labeled antimesothelin antibody mAbMB provided the SPIONs with the 

capacity to localize and image mesothelin-expressing cancer cells with both SPECT and MR imaging 

modalities [74]. Zolata H. et al (2015) decorated the surface of SPIONs with APTES, PEG and then 

conjugated thiolated bifunctional chelator 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-

3,6,9,-triacetic acid (PCTA). Furthermore, the nanoplatform was actively targeted with the monoclonal 

antibody trastuzumab, and drug-loaded with doxorubicin. Further studies proved their accumulation in 

tumors due to the EPR effect and HER2 receptor targeting, as well as their efficacy as therapeutic agents 

in breast cancer animal models [75]. In order to exploit the advantages provided by triple-modal imaging, 

Bai J. et al (2016) designed magnetic nanocapsules (NCs) loaded with hydrophobic SPIONs. These spherical 

NCs were shown to be capable of fluorescent imaging (by using indocyanine green), MRI (due to the 

SPIONs) as well as nuclear imaging (due to 111In labeling). Studies performed in tumor-bearing mice 

demonstrated increased tumor uptake after application of an external magnet at the tumor area, in 

comparison to NCs delivery to the tumor site via EPR [76].   

A copolymer consisting of poly(lactic acid) (PLA) and PEG, radiolabeled with 111In was investigated by 

Banerjee S.R et al (2017). SPECT and Near-infrared fluorescence (NIFR) imaging were used to reveal its 

pharmacokinetics and biodistribution, providing a direct comparison between the PSMA-targeted and the 

non-targeted complex. Similar accumulation in all tissues was demonstrated by both complexes except in 

tumor and liver, where they demonstrated different uptake and stability results. Microscopy studies showed 

that accumulation of the non- PSMA-targeted nanoparticles was less epithelium-specific, and dependent 

on an EPR and phagocytosis combination [77]. 

2.10 Iodine-125, 131 

A method that enables rapid radiolabeling with 125I of silver nanoparticles capable of tracking the in vivo 

tissue uptake after their systemic administration, was developed by Chrastina A. and Schnitzer J.E. (2010). 

Nanoparticles were labeled via chemisorption of 125I onto the Ag surface and administered intravenously. 

Biodistribution studies and SPECT imaging demonstrated high uptake and accumulation in the liver and 

spleen, something that should be investigated as it could lead to potential toxicity issues [78]. Seven years 

later, another simple and concomitantly efficient method was introduced for radiolabeling three types of 

Ag nanoparticles; pure Ag, a polyvidone (PVP)-Ag complex and a doxorubicin-PVP-Ag NP conjugate. 

Biodistribution studies revealed higher uptake in cancerous cells for the latter nanocomplex, rendering it as 

a promising theranostic agent [79]. 

A dual-modality imaging agent applicable in SPECT and MRI was developed by modifying USPIOs with 

an RGD peptidex. Radiolabeled nanoparticles with high radiochemical purity, stability and tumor specificity 

were produced, with biodistribution and in vivo studies verifying the promising abilities of these 

nanoconstructs as radiotracers of ανβ3-overexpressing tumors. Replacement of 125I with 123/124I or 131I could 

provide a PET radiotracer or therapeutic agent, respectively [80]. Another similar agent was constructed by 

Wang J. et al (2016) who conjugated 125I-c(RGDyK) peptide onto magnetic nanoparticles that had first been 

coated with PEG. This construct targeted U87MG tumors in murine models, which were in turn treated 

with photothermal therapy in vivo. SPECT/MR imaging modalities confirmed low mononuclear phagocyte 

uptake [81]. Radiolabeled hydroxyapatite (HAp) nanoparticles with and without further modification were 

investigated, pertaining to their capability as organ-targeting carriers. The nanosystems evaluated were 

radiolabeled with 125I and consisted of HAp nanoparticles, HAp modified with chitosan (Ch) and HAp 

nanoparticles with a coating of blended Ch with poly-D,L-lactide-co-glycolide polymer (PLGA). The 

stability, kinetics and targeting behavior of these three constructs were evaluated in vitro and in vivo, and 

demonstrated significant differences from one group of nanoparticles to the other, with both the chitosan 

coated nanoparticles exhibiting elevated radioactivity in various organs [82].   
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Recently, Clanton R. et al (2018), exploited the strong interactions developed between gold and iodine 

atoms, and proceeded to synthesize Au nanocarriers with radioactive 125I integrated into their structure. 

The timing of 125I addition was investigated, as it is blamed for the aggregation that occurs when it is added 

too early in the synthetic process. As AuNPs target neoplastic cells with increased energy consumption, 

these stable 125I-labeled AuNPs show great potential as theranostic agents (x-ray/CT imaging due to the 

AuNPs and therapy due to 125I  [83].  A variety of metal-organic complexes was investigated, focusing 

especially on Cobalt (Co) nanotubes (NTs) functionalized with folic acid. Doxorubicin was embedded in 

these targeted nanocarriers which were traceable in murine models with the aid of 131I. Tumor growth was 

found to be suspended in vivo, with minimal side effects reported [84]. 

A self-assembled amphiphilic, protein-based conjugate comprised of hydrophobic maleimide-

functionalized poly-(ε-caprolactone) (PCL) covalently linked to hydrophilic bovine serum albumin (BSA), 

was directly labeled with 131I. After its synthesis, the BSA-PCL conjugate was functionalized with anti-

epidermal growth factor receptor (anti-EGFR) antibody and utilized for targeted RIT. The anti-EGFR-

labeled particles exhibited higher cytotoxicity in vitro and in vivo, and higher cellular and tumor uptake in 

murine cancer models, when compared to particles without the antibody [85]. In a similar rationale, 

PEGylated liposomes linked to PCL-BSA, functionalized with an RGD peptide and labeled with131I, were 

tested against lung cancer in NCI-H460 tumor-bearing mice, and showed great potential as cancer 

theranostic agents [86].    

PAMAM dendrimers were synthesized, linked to HMPAO (chelator), and conjugated with Buthus 

martensii Karsch chlorotoxin (BmK CT) as a potential theranostic tool for glioma. Although non-

radiolabeled dendrimers showed no inhibition effect on C6 glioma cells, 131I-dendrimers attained a 

significant decrease in the cancerous cell population [87]. Polypyrrole (PPy) nanoparticles, actively targeted 

with transferrin and pre-labeled with 131I were synthesized using a one-step strategy for synergistic 

anticancer treatment, combining RIT and photothermal therapy (PTT). The biodistribution, in vivo 

specificity and therapeutic efficacy of these transferrin capped nanoparticles was compared to PPy@BSA-
131I, and exhibited enhanced therapeutic response after being intravenously injected in U87MG tumor-

bearing mice [88].  

2.11 Samarium-153 

A dual-modality imaging probe, capable of upconversion luminescence (UCL) and SPECT imaging was 

designed using lanthanide-based upconversion nanophosphors (UCNPs). The objective of the study was 

the development of a post-labeling method of the interior of these nanoparticles with 153Sm. It was shown 

that this post-labeling approach could be applicable to most of the rare earth nanoparticles for their in vivo 

tracking [89]. The same type of nanoparticles was studied by Cao T. et al (2013), who modified NaYF4 

nanoparticles with PEG and co-doped them with Yb3+, Er3+ and 153Sm3+. The ultrasmall radiolabeled 

nanoparticles (<10nm) exhibited renal clearance and dual-modality imaging capabilities via γ-counter 

analysis and SPECT [90]. 

Hydroxyapatite nanorods (HA) incorporated with gadolinium (Gd) were post-labeled with radioactive 

samarium, and their biodistribution was studied. These nanosystems proved to accumulate in the liver and 

spleen and demonstrated difficulty in excretion from the latter. However, 153Sm-HA:Gd showed enhanced 

properties in vitro and imaging abilities with both SPECT and MR imaging in vivo [91].  

Another SPECT/MR imaging probe was suggested by Gholami A. and Mousavie Anijdan S.H. (2015) who 

synthesized SPIONs and radiolabeled them with 153Sm via a DTPA dianhydride chelating agent. 

Biodistribution studies showed high uptake in the reticuloendothelial system (RES) while exhibiting rapid 

clearance from blood and other organs. Therefore, these nanoconstructs could unambiguously be 

considered as a useful tool in RES theranostics [92]. Samarium oxide-152 ([152Sm]Sm2O3) was encapsulated 

in PLGA nanoparticles and activated in a nuclear reactor, thus producing radioactive [152Sm]Sm2O3-PLGA 

NPs. A tracer kinetics study was conducted in rats, to determine the effects of different modes of 

administration. In the case of intravenous administration, the NPs were rapidly accumulated in the RES 
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organs, while in the case of oral administration low-dose distribution to most organs was confirmed, 

indicating absorption of the nanoconstructs [93].    

2.12 Holmium-166 

The theranostic capabilities of 166Ho, a β- and γ- emitting isotope, were exploited when it was mixed with 

SPIONs functionalized with the DTPA chelator. A product of high radiochemical purity was provided, 

with accumulation in the liver and spleen, proving the efficacy of these nanoconstructs as RES theranostic 

agents [94]. A different approach for 166Ho radiolabeling was developed by Di Pasqua A.J. et al (2012) who 

used stable Holmium-155 in conjunction with mesoporous silica MCM-41 nanoparticles, and irradiated the 

system, thus producing a radioactive complex. This complex was tested in murine models with orthotopic 

non-small cell lung cancer, giving satisfactory results [95].   As mentioned in the example above, irradiation 

of a complex containing 165Ho in order to acquire a radiolabeled with 166Ho carrier is a common strategy. 

Based on this strategy, mesoporous carbon nanoparticles (MCNs) that contain holmium oxide were 

neutron-activated to produce 166Ho-MCNs. Consequent pegylation provided a biocompatible and readily-

dispersible nanoconstruct. Toxicity studies substantiated the non-toxicity of the 165Ho-complex towards 

the cancerous cells and the exact contrary effect of the radiolabeled counterpart [96].  

In another study, holmium acetylacetonate was irradiated as described above, thus yielding a 166Ho-labeled 

nanodevice with sufficient radiation for nuclear imaging and radioablation of tumor sites via intratumoral 

injections. The great advantage of using Holmium as a contrast agent is the fact that it is a nuclide that can 

be used in MR, CT and SPECT imaging, as well as in therapeutic applications [97]. 

2.13 Lutetium-177 

A comparative study of 177Lu labeled agents was conducted by Vilchis-Juárez A. et al, who assessed the 

therapeutic response of 3 different complexes. The first complex consisted of radiolabeled gold 

nanoparticles, the second one of a radiolabeled cyclo-RGDfK(C) peptide and the last one a combination 

of the above. Radiolabeling of all three constructs was afforded via the DOTA chelator. The 177Lu-AuNP-

RGD nanoconstruct proved to be the most effective agent, demonstrating the highest uptake and retention 

in tumor cells, thus rendering it as a potential theranostic tool [98]. In another study, the stability of AuNPs 

modified with metal-chelating polymers (MCP) that embody DOTA chelators was tested. The conjugation 

of gold nanoparticles to MCP was afforded via a single thiol, a dithiol and a multi-thiol end group and their 

stability and cell uptake was evaluated [99]. The same group of Yook S. et al (2016) developed gold 

nanoseeds modified with PEG, radiolabeled via DOTA chelating agent and labeled with panitumumab that 

actively targets EGFRs, for the treatment of locally advanced breast cancer (LABC). The targeting 

specificity of the system was compared to the same non-targeted nanoseeds and the nanoconstructs were 

injected intratumorously exhibiting high radiation doses absorbed by the tumor site compared to low uptake 

in normal organs [100]. With the same rationale, trastuzumab-labeled nanocarriers were studied 

demonstrating enhanced tumor inhibition and DNA double strand breaks (DSBs) in SK-BR-3 and MDA-

MB-361 cancer cells, when compared to the unlabeled counterparts [101]. In yet another study, Au 

nanoparticles were radiolabeled with 177Lu via the DOTA-Gly-Gly-Cys (DOTA-GGC) oligopeptide. These 

NPs were surface-functionalized with an RGD peptide and a HS-pentyl-pegaptanib aptamer, and exhibited 

efficient in vitro angiogenesis inhibition in the human umbilical vein cell line EA.hy926 [102].      

A nanoprobe, comprised of gold nanoparticles in the cavity of PAMAM-G4 dendrimers was designed for 

simultaneous OI, plasmonic-PTT and targeted RIT. Bombesin and folic acid were covalently conjugated 

onto the dendrimers via their carboxylate groups, and were consequently radiolabeled with 177Lu, via the 

chelator S-2-[4-Isothiocyanatobenzyl]-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-benzyl-

DOTA). Results of T47D tumor cells treated with this complex showed an outstanding decrease in cell 

viability up to 90% [103].        

A combo treatment of breast and pancreatic cancer was devised, consisting of two separate systems; an 

anticancer agent called cyclopamine (CPA) combined with liquid-lipid nanoparticles (LLP) and radiolabeled 
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core-crosslinked polymeric micelles (CCPM). This system was proved to limit 4T1 cancer cells and inhibited 

tumor relapse in Miapaca-2 cell lines [104]. Satterlee A.B. et al (2015) efficiently encapsulated 177Lu into 

lipid-calcium-phosphate (LCP) nanoparticles and studied the effect of increased radioisotope on the 

properties of the nanosystem. The theranostic properties of this radioisotope resulted in tumor remission 

in H460 and UMUC3/3T3 murine animal models, which could be visualized by SPECT and Cerenkov 

imaging [105].  
177Lu-DOTATATE was encapsulated in PLGA nanoparticles coated with PEG, and were assessed 

regarding their pharmacokinetics and encapsulation efficacy in vitro as well as in rats in vivo. The aim of this 

study was to evaluate the behavior of this nanosystem as a potential peptide receptor radioisotope 

therapeutic (PRRT) agent [106]. Fullerene cages have also been reported as appropriate nanovehicles for 

radioisotope therapy by incorporating 177Lu. Conjugation with interleukin-13 (IL-13) peptide dyed with 

tetramethyl-6-carboxyrhodamine (TAMRA) was also attained, giving the possibility for targeting and 

imaging of glioblastoma multiforme tumors [107].      

2.14 Rhenium-186, 188 

Due to previous indications that liposomes could improve the properties of radioactive isotopes 

incorporated, Chen M. et al (2010) further investigated this hypothesis by producing liposomes radiolabeled 

with 188Re-N,N-bis(2-mercaptoethyl)-N’,N’-diethylenediamine (BMEDA) and intravenously administering 

them in HT-29 colorectal adenocarcinoma animal models. The study of this group compared the 

biodistribution and imaging profiles of these liposomes with and without doxorubicin. Pharmacokinetic 

and bioavailability studies demonstrated similar results between the two types of liposome, which were 

superior to 188Re-BMEDA [108]. The following year, 188Re-BMEDA was encapsulated into liposomes, 

decorated with PEG and tested as a theranostic agent against brain glioma in rat models. Autoradiography, 

histopathological analysis and SPECT/CT imaging showed potential of this nanoconstruct and set the path 

for further investigation [109]. A study focusing on brachytherapy of glioblastoma followed, in which 

liposomes were used, this time with rhenium-186 radiolabeling. Due to the short path length of 186Re, the 

behavior of this nanoconstruct was monitored with SPECT/CT imaging and gamma camera after 

radiolabeling with 99mTc. Results showed no overt toxicity of surrounding tissues even at high doses [110].    

Aptes-functionalized SPIO nanoparticles were modified with the N-hydroxysuccinimide (NHS) ester of 

polyethylene glycol maleimide (NHS-PEG-Mal). An N2S4 chelating agent was conjugated to the surface of 

the modified SPIONs for further radiolabeling with 188Re. The therapeutic and targeting efficiency of this 

complex was studied for both the targeted (with the addition of Rituximab) and untargeted system (for 

accumulation through the EPR effect). Results showed efficient tumoricidal effect of the targeted SPIONs 

[111].   

Modification of graphene oxide nanoparticles with silica-coated, core-shell magnetic nanoparticles was 

attained, aiming to manufacture a peanut-shaped platform, which is supposedly more easily taken up by 

tumorous tissue, when compared to the spherical counterpart. These nanovehicles were loaded with 

gambogic acid, while polyethyleneimine (PEI) was also grafted onto their surface. Radiolabeling with 188Re 

offered the possibility of internal radiotherapy in VX-2 tumor animal models, with simultaneous SPECT 

and CT imaging [112]. 

2.15 Gold-198 

A decade ago, gold and dendrimer composite nanodevices (CNDs) were synthesized and radiolabeled, 

resulting in a poly{198Au0} CND system targeting melanoma tumors which exhibited up to 45% regression 

in murine models [113]. A couple of years later, gold nanoparticles labeled with 198Au and functionalized 

with gum arabic glycoprotein (GA) were administered intratumorally and studied in vivo, demonstrating high 

tumor affinity in human prostate tumor-bearing mice. Clinical studies showed surpassing tumor volume 

reduction up to 82% comparing to the control group, and pharmacokinetics of the nanosystem 

substantiated minimal or no leakage of radioactivity to the non-targeted organs [114]. On the same pathway, 
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gold nanoparticles were also functionalized with epigallocatechin-gallate (EGCg) and radiolabeled in order 

exploit the strong antioxidant properties of EGCg. Besides its antioxidant properties, EGCg targets the 

laminin receptor Lam67R, which is overexpressed on human prostate cancer cells, resulting in similar tumor 

volume reduction as mentioned above [115]. Since studies with 198Au focus on gold nanoparticles, a 

comparison study of similar-sized but differently shaped (spheres, disks, rods, cages) PEGylated gold 

nanoparticles was conducted in EMT6 tumors. The results of this study demonstrated enhanced 

accumulation of the nanospheres and nanodisks in tumorous sites albeit on the surface, when compared to 

nanorods and nanocages which presented a lower accumulation but better intratumoral distribution [116].  

The nascent possibilities of 198Au-doped gold nanocages were reported by Wang Y. et al (2013), who 

demonstrated the unprecedented Cerenkov luminescent capabilities of the radioisotope. The radiolabeled 

nanostructures were decorated with PEG chains and offered luminescent imaging of EMT-6 tumors after 

intravenous administration in murine animal models [117].  In an effort to incorporate radioisotopic 199Au 

in Au NPs, Zhao Y. et al (2016) once again used gold nanoparticles as nanocarriers. PEGylation and linking 

to DAPTA followed, in order to provide efficient imaging via SPECT of a triple negative breast cancer 

(TNBC) and its metastasis [118].  

2.16 Bismuth-213 

A liposomal carrier for 213Bi was designed by Lingappa M. et al (2010), who functionalized the liposome 

with DTPA for radiolabeling, and with a mouse anti-Her/neu monoclonal antibody for targeted treatment 

of metastatic mammary carcinoma. The targeted liposomal vehicle, when compared to the same construct 

without the antibody and to the radiolabeled antibody without the liposome, showed increased cytotoxicity 

when compared to the non-targeted construct, and less efficacy when compared to the radiolabeled 

antibody [119].  

2.17 Radium-223,225 

With alpha decay nanoparticles, a major challenge is faced, namely the inability of traditional chelating 

agents to retain the radioactive daughters of the parent radioisotope at the targeting site without damaging 

adjacent tissue. For this purpose, core lanthanum phosphate and core-shell (with up to two shells) 

nanoparticles were evaluated pertaining to their capability to retain 223Ra and 225Ra/225Ac isotopes, and were 

shown to exhibit satisfactory retention abilities as radioisotope nanocarriers [120]. 

Mokhodoeva et al investigated the direct labeling of SPIONs with 223Ra, the first alpha-emitting radioisotope 

with FDA approval for clinical application. It was demonstrated that the [223Ra]Fe3O4 NPs retained their 

radiolabel for up to 24 h post-preparation, while in vitro stability studies in PBS, bovine plasma and serum 

at 11.4 and 22.8 days showed a maximum average 223Ra release of 5%, rendering these NPs suitable for 

further in vivo testing [121].  The group of Piotrowska A. et al (2017) utilized type A nanozeolite nanoparticles 

containing sodium, which were linked to an NK-1 receptor-targeting peptide. These NPs were pegylated 

and labeled with 223Ra by ion exchange with the sodium. Results showed efficient targeting of glioma cells 

and satisfactory retention of the radioisotope in the NPs [122]. 

2.18 Actinium-225 

A multi-shell nanosystem consisting of lanthanide phosphate core-covered with a gold shell and four 

additional shells of gadolinium phosphate was devised in order to overcome the difficulties reported on 

targeted alpha therapy (TAT) [123]. The same group proceeded to further functionalize these nanoparticles 

with the monoclonal antibody 201b via the carboxylate group of discrete polyethylene glycol chains. 

Tumor-eradication properties of the nanoconstruct were demonstrated, with the daughter isotope 213Bi 

being retained by the nanoparticles in the lung up to ~90% at 24h post-injection [124]. 
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3 Conclusions 

Despite the numerous successful studies of radiolabeled nanoparticles applied in adjuvant therapy, work in 

this field is still in its infancy and there is a need for research that performs in-depth investigation on real 

diagnostic or therapeutic applications with potential for clinical translation. It is expected that improved 

NPs will be developed, based on the accumulated knowledge and technology in which radioisotopes 

promise to continue playing an important role. We hope that these multifunctional NPs for multimodal 

imaging and theranostics can overcome present challenges and provide great contributions to human health 

in the near future. 
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