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ABSTRACT  

The complex phenomenon by which the body responds to any injury of skin or tissue is known as 

wound healing. A number of phases like exudative, proliferative, and extracellular matrix remodeling 

are orchestrated events to be occurred involving blood cells, parenchymal cells, and different soluble 

mediators. Different internal, as well as external factors, regulate the speed and quality of healing. The 

delay in wound healing process causes the chronic wound or scar formation. At the present moment, 

the upscale research for identification of agents causing accelerated healing is important. Moreover, the 

biocompatibility of the accelerators needs to be investigated. Recent biomedical researches for wound 

care target to provide antimicrobial protection as well as matrix scaffolding for quick repairing of the 

skin tissue. In recent studies with natural peptides have shown that they are important components in 

developing the nano-medicines for their usefulness and therapeutic efficiency. New therapeutic 

formulations can be developed using these natural peptides utilizing different nanoparticle delivery 

system. This review deals with the developmental study on efficient wound care system where the 

possible use of natural peptides in combination with nanomaterials has been explored. A trial has also 

been made on the findings made over the past few years on the use of peptides as tissue regenerating 

agents through effective wound healing pathway. 
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1 Introduction 

The experimental research in the field of application of nanomatrials has shown a monumental rise in very 

recent years. The typical focus of nanoparticle research is to design the nanoparticles (NPs) pointing 

different strategies related to its use in resolving environmental and biomedical problems such as 

therapeutics, drug delivery, imaging, etc. [1-4]. In comparison to the bulk material the nano form of the 

particles possess large ‘surface-to-volume’ ratio that makes them suitable for applications in different fields 

of life. Thus, the emphasis on synthesis and analysis of NPs from various noble metals like silver, gold, 

platinum, etc has been put forward. The metal nanoparticles can be synthesized by the conventional method 

using different chemicals as reducing agents to obtain desired nanostructures with controlled physical and 

chemical properties [5-7]. However, the use of hazardous conditions, toxic solvents, high amounts of energy 

and pressure can be mentioned as the negative points of these processes.  

The methods involved in the synthesis of metal nanoparticles are still at the stage of infancy and thus 

problems related to the stability, crystal growth, aggregation etc. are the major concern of the researchers 

[5-7]. Therefore, it is needed to be developed a new synthetic approach for designing nanomaterials with 

all the desired features having lesser toxicity to the environment as well as living system. Green strategies 

have been considered as the environmentally sustainable nontoxic approach in this regard. During the 

course of time a number of new green strategies have been evolved. The most important criteria of choosing 

a green approach depends solely on the inducing capacity of the selected biomolecules to generate 

nanoforms along with its ability to manipulate the size and structural organization of it avoiding the problem 
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of aggregation [8-18]. Several evidences have shown the formulation of nanoparticles using different small 

biomolecules like monosaccharides (glucose or galactose), amino acids, short peptides isolated from plant 

[8-18]. Complex biomolecules like long chain peptides and microorganisms have also been used efficiently 

for reduction of metal ions to its nano form and this nano-conjugates have also been found to have 

significant potential in therapeutics [14-17].  

An extensive study has been forged to identify the natural peptides having potential therapeutic value but 

investigation on clinical translation revealed their limitation due to the inefficient delivery at the target sites 

in vivo [19]. Therefore, it is important to revisit this field of study so that new strategies can be advocated to 

facilitate the target specific delivery of the peptide conjugated nanomaterials. On the other hand, natural 

peptides have unique properties to enhance the efficiency of different therpeutiac agents carried with NPs. 

Moreover, the discussion on peptide-nanomaterials in medical biology reveals that the current applications 

of biosynthesized nanoparticles in the field of molecular biology includes the development of nano-

structures, nano-devices, and nano-systems that have the capacity to revolutionize the medical therapeutics 

and diagnostics. These bio-synthesized nanodevices are innovative, less toxic, environment friendly and 

biocompatible. They also provide other advantages like the ability of crossing cellular barriers activating 

various cellular transport systems [20, 21]. They can also impose biocompatibility and safety profiles 

through the nanodelivery systems [22]. Nano-therapeutics can be included in the modern health care 

technologies to upgrade the quality of healthcare and to face the challenges of difficult prognosis like issues 

related to tissue regeneration and wound repairing. [23]. There are several behavioral factors of individuals 

that can affect the rate and quality of healing like aging, co-morbidity, stress, smoking or drinking, 

infections, malnutrition etc. The wound environment is another significant factor to be considered. If the 

environment is not suitable enough then it can cause the delay in the healing process causing chronic wound 

or scar formation like diabetic wound repairing.  

Several wound healing agents have been studied so far. Either they are derived from natural sources like 

plants and animals or are developed through chemical synthesis. The natural products seem to be safer for 

the tissues due to their biocompatibility. In this review we will discuss different kinds of the animal as well 

as plant-derived peptides and their role as wound healing accelerator when combined to nanomaterials. 

Green nanomaterials are more environment friendly due to its anti microbial efficacy, anti inflammatory 

action, natural moisturizing efficacy, biocompatibility with skin and other tissues. In this review we have 

focused on recent advances in building strategic approach of synthesizing peptide-nanomaterials and their 

use in skin wound healing and tissue regeneration.  

2 Peptides and Their Bioactivity  

Peptides are found to have specificity for biological targets and thus they have been emerged as promising 

agents in medical therapeutics. But recent investigations have revealed that it is important to incorporate 

the peptides with the nanoparticle delivery system for effective implication in nanomedicine.  

2.1 Bioactive Peptides  

The peptides are known to be versatile as they do participate as integral part of different metabolic processes 

of body system like immunological and enzymatic network and nutrition and storage devices. They can act 

as transporters, signaling molecules as well as regulatory mediators. Other than these they also act as 

antimicrobial agents and antioxidants. Peptides also have the ability to interact with cellular membranes in 

a nonreceptor-ligand type of binding. These efficiencies made them eligible for cellular therapeutics. 

Already a list of over 1500 peptides has been described (Table1). The origin of these listed peptides includes 

insects, amphibians, plants, mammals as well as microorganisms, [24]. Initially, some peptides having 

antimicrobial efficacy were isolated and identified from the skin of frogs and lymph from insects. Peptides 

are ubiquitously distributed in all invertebrates as suggested by Boman with other group of researchers 

[25,26-30]. VK25 is a peptide first identified from the Komodo dragon (Varanus komodoensis), is a cationic 

antimicrobial peptide (CAMP).  
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Table 1:  Plant derived peptides with antibacterial activity 

Peptide Source Family Activity 

Cn-AMPI Cocos nucifera - Gram+/Gram- 

Cn-AMP2 Cocos nucifera - Gram+/Gram- 

Cn-AMP3 Cocos nucifera - Gram+/Gram- 

Cy-AMP1 Cycas   revoluta - Gram+/Gram- 

Cy-AMP2 Cycas   revoluta - Gram+/Gram- 

Dendrocin Dendrocalamus  latiflora - Grarn+/Grarn- 

Ginkbilobin Ginkgo biloba - Gram+/Gram- 

Lunatusin Phaseolus  Iunatus - Gram+/Gram- 

Circulin A Chassalia   parviflora Cyclotide Grarn+/Gram- 

Circulin B Chassalia  parviflora Cyclotide Gram+/Gram- 

Cyclopsychotride A Psychotria  tongipes Cyclotide Gram+/Gram- 

Kaiata B2 Oldenlandia  affinis Cyclotide Gram+ 

Ah-AMP1 Aesculus   hippocastanum Defensin Gram+ 

Cp-Defensinll Vigna  unguiculata Defensin Gram+/Gram - 

Fabatin-1 Vicia  faba Defensin Gram+/Gram- 

Fabatin-2 Vicia  faba Defensin Gram+/Grana- 

Pp-AMP 1 Phyllostachys  pubescens Defensin Gram+1Gram- 

Pp-AMP2 Phyllostachys  pubescens Defensin Gram+/Gram- 

Pp-Defensin Pyrularia  pubera Defensin Gram+/Gram- 

Pth-Stl Solanum   tuberosum Defensin Gram+/Gram- 

So-D1 Spinacia   oleracea Defensin Gram+/Gram - 

So-D2 Spinacia   okracea Defensin Gram+/Gram- 

So-D3 Spinacia   okracea Defensin Gram+/Gram- 

So-D4 Spinacia   oleracea Defensin Grarn+/Gram - 

So-05 Spinacia   oleracea Defensin Gram+/Gram- 

So-D6 Spinacia   okracea Defensin Gram+/Gram- 

So-D7 Spinacia   okracea Defensin Gram+/Gram - 

Tu-AMP 2 Tulipa  gesneriatza Defensin Gram+/Gram - 

Tu-AMP-1 Tulipa  gesneriana Defensin Gram+/Gram- 

VaD1 Vigna  angularis Defensin Gram+/Gram- 

lirD1 Vigna  radiata Defensin Gram- 

VrD2 Vigna  radiata Defensin Gram+/Gram- 

White cloud bean defensin Phaseolus vulgaris Defensin Gram+/Gram- 

Brazzein Pentadiplandra brazzeana Defensin Gram+/Gram- 

Sesquin Vigna   sesquipedatis Defensin-like Gram+/Gram- 

Coconut antifungal Peptide Cocos nucifera Glutamic acid-rich Gram+/Gram- 

Pg-AMP 1 Psidium   guajava Glycine-rich Gram- 

Ac-AMP1 Amaranthus    caudatus Hevein-I ike Gram+ 

Ac-AMP2 Amaranthus   caudatus Hevein-I ike Gram+ 

Ee-CBP Euonymus  europaeus Hevein-like Gram+ 

Fa-AMP1 Fagopyrum  esculentum Hevein-like Gram+/Gram - 

Fa -AM P2 Fagopyrum  esculenturn Hevein-I ike Gra m+/Gram - 

Pn-AMP1 Pharbitis  nil Hevein-like Gram+/Gram- 

Pn-AMP2 Pharbitis  nil Hevein-I ike Gram+/Gram- 

WjAMP1 Eutrema wasabi Hevein-like Gram+/Gram— 

Ib-AM P1 Impatiens  balsamina Impatiens Gram+/Gram— 

Ib-AMP4 Impatiens  balsamina Impatiens Gram+ 

Mc-AMP1 Mesembryanthemum crystallinum Knottin Gram+ 

Mj-AMP1 Mirabilis jalapa Knottin Gram+ 

Mj-AMP2 Mirabilis Jalapa Knottin Gram+ 

Pa-AMP 1 Phytolaccaa   mericana Knottin Gram+ 

Pa-AMP2 Phytolaccaa  mericana Knottin Gram+ 

MBP-1 Zea mays MBP-1 Gram+/Gram— 

Shepherin Capsella  bursa-pastoris Shepherin Gram+/Gram— 

Shepherin II Capsella  bursa-pastoris Shepherin Gram+/Gram— 

Snakin-1 Solanum tuberosum Snakins Gram+/Gram— 

Snakin-2 Solanittntuberosum Snakins Gram+/Gram — 

Vicilin-like Antimicrobial peptide 2a Macadamia integrifolia Vicilin-like Gram+ 

Vicilin-like Antimicrobial peptide 2b Macadamia integrifolia Vicilin-like Gram+ 

Vicilin-like Antimicrobial 2c-1 Macadamia integrifolia Vicilin-like Gram+ 

Vicilin-like Antimicrobial peptide 2c-2 Macadamia integrifolia Vicilin-like Gram+ 

Vicilin-like Antimicrobial peptide 2c-3 Macadamia integrifolia Vicilin-like Gram+ 

Vicilin-like Antimicrobial peptide 2d Macadamia integrifolia Vicilin-like Gram+ 
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After this discovery, scientists have designed a synthetic peptide DRGN-1 taking VK25 as an inspiration. 

This peptide has two amino acid residues taken from the original protein sequence of the dragon's VK25 

[31]. Another peptide named cathelicidin-OA1 was identified by Cao et al (2018) [32]. The source of this 

peptide is the skin of an amphibian species (Odorrana andersonii). This peptide is originated by the cleavage 

of a prepropeptide having the length of 198 amino acids. The amino acid sequence of cathelicidin-OA1 is 

‘IGRDPTWSHLAASCLKCIFDDLPKTHN' and its molecular mass is 3038.5 kDa. Cathelicidin-OA1 is 

found to promote healing of wounds in mouse model having full-thickness skin wounds by accelerating 

the re-epithelialization. It also induces the formation of granulation by stimulating the assemblage of 

macrophages to the site of damage. As the bioactive peptides act as antibacterial, antiviral, antifungal, 

and/or antiparasitic agents and possess the antioxidant activity they are crucial in medical research 

specifically in healing wounds.  Most of the bioactive peptides are rich in cysteine or glycine residues. They 

have disulphide bridges between the cysteinyl residues to increase their stability. They also contain charged 

amino acids and hydrophobic domains. The amino acids are primarily cationic. Peptides having cationic 

charge are potent antibacterial or antiviral agents though few examples of anionic peptides also exist. 𝛽-

sheets or 𝛼 –helices of these molecules are either looped or extended. Different structureal combinations 

of these domains are found in the natural bioactive peptides [27,28, 33-43]. The peptides are of three types 

viz. cell-penetrating peptides, antimicrobial peptides, and peptide toxins. 

2.1.1 Cell Penetrating Peptides 

In order to function in the cytosol, the peptides - nanoparticles conjugate must cross the plasma membrane. 

Over the past 25 years, a large volume of research has been focused on the development of peptide agents 

capable of increased uptake of cargoes into the cell ranging from individual protein molecules [44] to 

liposomes with diameters of 200 nm [45]. These cell-penetrating peptides (CPPs) have been originated from 

natural translocating proteins that are capable to cross biological membranes. The first evidence of the 

CPPs was found in the HIV-1 trans-activator of transcription (Tat) protein. TAT can penetrate cellular 

membranes by an energy-independent pathway they can be accumulated in the nucleus [46,47]. Further 

investigation revealed that a minimum peptide sequence is required for its uptake into the cell [48] and this 

leads to the discovery of different CPPs. One of such CPPs is penetrating. It was first identified in the 

homeodomain of the Drosophila antennapedia protein [49]. A large number of CPPs have been identified 

from various sources. Some of these sources are viral proteins [50], animal venoms [51] and synthetic 

peptide libraries [52]. The structural organization revealed that these peptides are typically 5–30 amino acids 

long having versatility in their structural and chemical properties thus these are very effective as bioactive 

molecules and nanoparticle delivery agents. A comprehensive list of CPPs is found in the review by Milletti 

[53].  

2.1.2 Peptide Toxins 

Animal venoms are the most potentially active biomolecules with broad therapeutic applications [54]. The 

composition of venom shows the presence of various bioactive peptides. These peptides are capable of 

inducing the pharmacologic response after its delivery to the recipient [55]. They are highly potent and 

specific and thus of great interest. venom peptides are an attractive tool for probing the structure and they 

are specific for targets like voltage-gated ion channels, nicotinic acetylcholine receptors, N-methyl-D-

aspartate (NMDA) receptors, and acid-sensing ion channels (ASICs) [56]. They also act as templates for 

synthesizing drugs that can target different receptors. Many of these drugs have already been successfully 

translated to the clinic. 

2.1.3 Antimicrobial Peptides 

Antimicrobial peptides can combat the problem of antibiotic resistance and multidrug resistance avoiding 

the conventional mechanisms of resistance and they form the basis of a new class of therapeutics [57,58]. 

They are found in a variety of organisms and perform the antimicrobial activity by disrupting biological 

https://journals.aijr.in/index.php


18 

ISSN: 2581-5164 
Available online at Journals.aijr.in 

Nath et al., Adv. Nan. Res.; Vol. 2 Issue 1, pp: 14-31, 2019 

membranes, leading to depolarization, lysis, and cellular death of the microorganisms. Structural 

organization of AMPs reveals that these are short peptides having 10–50 amino acids long residues, cationic 

having charge in between +2 to +9 with a number of hydrophobic residues that can interact with the lipid 

membranes [59]. AMPs are extremely diverse; more than 1,200 peptides have already been identified which 

can further be divided into five structural classes. A variety of mechanistic pathways have been proposed 

[60]. AMPs do not target a specific molecule or biochemical process, but it provides them with the broad-

spectrum activity [61].  

One of the key concerns of using these AMPs in eukaryotic system is the toxicity. Moreover, the free AMPs 

get cleared rapidly by the kidney and thus have poor pharmacokinetic profile [62]. So, efforts are being 

made to overcome such limitations by enhancing antimicrobial efficacy with minimized toxicity to 

eukaryotic cells. Therefore, nanoparticle-based strategies have been developed to improve the AMP delivery 

reducing their off-target treatment effects along with lesser toxicity. Jallouk et al. incorporated melittin into 

the lipid monolayer of perfluorocarbon nanoparticles to reduce the toxicity to sperm and vaginal epithelium 

[63] but their antiviral activity against HIV-1remained unaltered [64]. These findings demonstrated the 

potential usefulness of melittin-loaded nanoparticles as a topical vaginal virucide. Another example is the 

incorporation of the LL-37 (an AMP derived from human cathelicidin) into polymer nanoparticles found 

to retain its activity against Escherichia coli [65]. It was found that LL-37-loaded nanoparticles cause sustained 

LL-37 release and improved wound healing in a mouse injury model.  

2.2 Bioactive Green-peptides of Plant Origin  

Different AMPs act as important immunological barriers not only against the microorganism but also 

against different microbial infections. The AMPs are also found to represent another aspect of the resistance 

phenomenon commonly termed as hypersensitive response (HR). Generally, the antimicrobial peptides of 

plants are capable of production of ROS (reactive oxygen species), NO (nitric oxide), and SA (salicylic acid), 

in resistance to the infection. As AMPs potentially active against a variety of infectious agents they can also 

be classified as antibacterial, fungicides, antiviral, and antiparasitic. The antibacterial activity of these 

peptides is contributed by the motifs possessing high density of positively charged residues within the 

structure [66-69]. This structural organization leads to the peptide attachment and insertion into the 

bacterial membrane creating transmembrane pores resulting membrane permeabilization. The hydrophobic 

motifs are directly responsible for the interaction with the lipid components of the membrane, while the 

hydrophilic cationic groups produce link with the phospholipid groups found to be present in the 

membrane. 

The AMPs are antifungal as they can cause fungal cell lysis or even interfere with the fungal cell wall 

synthesis. Peptide binding induces fungal membrane permeabilization and/or pore formation [70-73, 76-

79]. Structural variation is found in the arrangement involving polar as well as neutral amino acids of the 

plant derived peptides having different functional activities [71, 74, 75,80]. The antifungal peptides differ 

from the antibacterial peptides by the absence of the conserved structural domains associated with 

antifungal activity [66, 67, 73,81-88]. The AMPs are also found to possess the antiviral activity. The 

effectiveness of these peptides mainly depends on their ability to interact with the membrane by means of 

electrostatic association. Negative charges of glycosaminoglycans facilitate the binding of AMP and 

compete with the viruses [71]. Purothionin is the first plant-derived AMP. This peptide is potentially 

effective against Pseudomonas solanacearum, Xanthomonas phaseoliand X.campestris, Erwinia amylovora, 

Corynebacterium flaccumfaciens, C. michiganense, C. poinsettiae, C. sepedonicum, and C. fascians [89]. The peptides that 

have been identified till date belong to the major groups including thionins (types I–V), defensins, 

cyclotides, 2S albumin-like proteins, and lipid transfer proteins [73,83, 86-88].  

Some AMPs that are not so common are viz. knottin-peptides, impatiens, puroindolines, vicilin, shepherins, 

snakins, and heveins [90-99]. There are evidences suggesting the full isolation of plant AMP in some plants. 

One such example is the isolation of purified lunatusin from Chinese lima bean (Phaseoluslunatus L.). It is a 

peptide having the molecular mass of 7 kDa. Lunatusin is found to be effective against Bacillus subtilis, B 

https://journals.aijr.in/index.php


19 

 

ISSN: 2581-5164 
Available online at Journals.aijr.in 

Green Peptide–nanomaterials; A Friendly Healing Touch for Skin Wound Regeneration 

megaterium, Proteus vulgaris, and Mycobacterium phlei. It has antifungal activity on Fusarium oxysporum, 

Mycosphaerella arachidicola, and Botrytis cinerea. But only after incubation with trypsin the peptide retains its 

antifungal activity [100]. This peptide was demonstrated to have a mitogenic response in mouse splenocytes 

[100] and proliferation of breast cancer MCF-7b cell line. Vulgarinin is another example of AMP. The 

source of this peptide is the seeds of haricot beans (Phaseolus vulgaris). The peptide is of a molecular mass 

of 7 kDa. It is effective against Mycobacterium phlei, Bacillus megaterium, B. subtilis, and Proteus vulgaris species of 

bacteria and Fusarium oxysporum, Mycosphaerella arachidicola, Physalospora piricola, and Botrytis cinerea species of 

fungus. Its antifungal activity was also retained after incubation with trypsin. Researches revealed that 

vulgarinin was effective in inhibiting the proliferation of leukemia L1210 and M1 cell lines and breast cancer 

MCF-7 cell line [101], and thus assumed to have the cytotoxic and antioxidant properties. Another peptide 

isolated from the seeds of Amaranthus hypochondriacus also displays antifungal activity [101]. Hispidulin 

purified from seeds of Benincasa hispida with a molecular mass of 5.7 kDa composed of 49 amino acid 

residues is also found to display broad and potent inhibitory effects against various human bacterial and 

fungal pathogens [102]. Two another antifungal peptide viz. cicerin and arietin, were isolated from seeds of 

chickpea (Cicer arietinum) found to have novel N-terminal sequences. These peptides have molecular 

masses of approximately 8.2 and 5.6 kDa respectively. Arietin expressed higher translation inhibitory 

activity in a rabbit reticulocyte lysate system and higher antifungal potency toward Mycosphaerella arachidicola, 

Fusarium oxysporum, and Botrytis cinereathan cicerin [103,104]. AMPs from dry seeds of Phaseolus vulgaris cv. 

exhibit both antifungal and antibacterial activity [105]. Another AMP (So-D1-7) was isolated from a crude 

cell wall preparation of spinach (Spinacia oleraceacv) and found to be active against Gram-positive (Clavibacter 

michiganensis) and Gram-negative (Ralstonia solanacearum) bacterial pathogens, as well as Fusarium culmorum, F. 

solani, Bipolarismaydis, and Colletotrichum lagenarium of fungal species [99].  

Antiparasitic peptides are another group of bio-active peptides. Following an initial report describing the 

lethal effect of magainin isolated from Xenopus sp skin on Paramecium caudatum, another peptide 

(cathelicidin) confirmed the antiparasitic activity of AMPs [106-110]. Vegetable priteinases are responsible 

for the Antihelmintic activity. Bromelain a stem enzyme of Ananas comosus shows antihelmintic effect against 

Haemonchus contortus [106-110]. Its activity is quite similar to that of the reference drug pyrantel tartrate. 

Similar effects were confirmed with different proteinases isolated from plants like Carica papaya, A. comosus, 

Ficus carica and Egyptian Asclepias inaica when tested in vitro against the rodent gastrointestinal nematode 

Heligmosomoides polygyrus [111]. The proteolytic effect of the proteinases cannot fully explain the antihelmintic 

effect because the inhibited enzymes also partially preserve the antiparasitic activity.  

Defensins are another group of AMPs. According to one group of investigators this AMPs are 18 to 48 

amino acids residue long while according to the other group these peptides are 12–54 amino acid residues 

long. These are cysteine-rich globular AMPs present in plants [112] and possess four disulphide bridges 

[112,113]. These peptides were first described in human neutrophils [113,114], but later found in human, 

chimpanzee, rat, mouse, marine arthropods, plants, and fungi [115-118]. Defensins are structurally classified 

into four different categories [119-122]. Group I cause inhibition of Gram-positive bacteria and fungi. 

Group II shows antifungal activity but not antibacterial. Group III are active against both Gram-positive 

and Gram-negative bacteria but inactive against fungus. Finally group IV are effective against Gram-

positive and Gram-negative bacteria along with fungus. Specific determinants of each group are responsible 

for the microbe specific activities of the peptides, these determinants are responsible for targeting different 

groups of infectious agents. Several defensins have been purified from different plants and are found to 

have activity against Candida albicans, C. parapsilosis, C.tropicalis, C. guilliermondii, Kluyveromyces marxiannus, and 

Saccharomyces cerevisiae, Fusarium oxysporum, F. solani, F. lateritium, and Rhizoctonia solani .  An antifungal peptide 

(7.3kDa) was purified from dried seeds of Phaseolus vulgaris. It is antifungal activity against Mycosphaerella 

arachidicola and also against Fusarium oxysporum [106]. From germinated seed of lentil (Lens culinaris), a 47-

amino-acid (Lc-def) defensin was purified. The molecular mass is 5.4 kDa. This peptide shows homology 

in sequence with the defensins isolated from legumes. It exhibits antifungal activity against Aspergillus niger 

[104,123]. Another defensin isolated from the seeds of Phaseolus vulgaris cv. having a molecular mass of 5.4 
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kDa with an N-terminal sequence, shows inhibitory activity against Mycosphaerella arachidicola, Setosphaeria 

turcica, and Bipolaris maydis.  

The bioactivity of these peptides are not only restricted as antimicrobial but many plant peptides and 

proteins evolved as signaling molecules and play a crucial role in homeostasis, defense, growth, 

differentiation, and senescence. These signaling peptides encompass highly diversified sequences showing 

variation within and across species and without a common phylogenetic origin. And thus, they cannot be 

classified in a single group [124-127]. However, a classification based on their suggested functions like 

homeostatic, innate immune responses (defensive), expansion and proliferation, organ maintenance and 

organogenesis, and sexual related functions can be done. The homeostatic function is performed by three 

peptide classes viz. natriuretic class (PNP), phytosulfokines (PSK), and rapid alkalinization factors (RALF). 

PNP has been purified from several species [125-128]. PSKs are sulphated penta-peptides with two 

sulphated Tyr residues synthesized as precursors. The phytosulfokine receptors (PSKR) displays guanylate 

cyclase activity [129,130]. The RALF factors are 5 kDa peptides in plant roots and are associated with hair 

growth control [130,131].  

There is another family CLE which includes all the different groups of peptides that are capable of triggering 

signaling pathways. CLV3 (CLAVATA 3) of Arabidopsis thaliana is a 13-residue long peptide that plays an 

important role in stem cell differentiation during meristematic development [132-134]. From these 

examples it is evident that the bioactive peptides derived from plants possess microbicide efficacy and are 

also involved in different signaling cascades related to important physiological functions.  

3 Peptides in Nanoparticle Synthesis 

The peptides are natural compounds in synthesizing the biocompatible metal nanoparticles in mild 

conditions [135-139]. They act as reducing agent as well as the capping agent during nanomaterials synthesis. 

There is enormous scope of use these peptides to bind, interact, and/or direct the regulated synthesis of 

nanoparticle with desired shape, size, structure and surface composition. Utilization of these peptides in 

the process of synthesis makes the process more varied and innovative [140]. These peptides not only 

reduce the bulk metal into nanoparticles but also act as the mold for the growth of metal nanoparticles. 

Mishra et al. used biotinylated di-tryptophan, a short-conjugated peptide for the one-pot synthesis of stable 

gold nanoparticles [135]. The NPs generated in this process was of an average size of 4 to 6 nm and was 

stabilized by tryptophan dipeptide. In another research, Giese et al. explained the synthesis of AgNPs under 

electron transfer conditions [136] where Ag+ ions bound by a histidine as the Ag-binding amino acid and 

a tyrosine as a photo inducible electron donor of the bound peptide.  

The application of a multidomain peptide (DOPA) for single-step, size-controlled synthesis of 

biofunctionalized AuNPs was described by Tekinay and coworkers [137]. The size-controlled synthesis of 

AuNPs was possible due to the presence of 3,4-dihydroxy-L-phenylalanine (L-DOPA) functional group in 

the peptide which is reductive in nature. Formation of biofunctionalized AuNPs took place as DOPA 

coupled its oxidation to the reduction of Au (III) ions and no additional reagent or reaction was needed. 

Applications of the microbial proteins (enzymes) to synthesze nanoparticles with varying range of shapes, 

sizes, and surface chemistry have been reported in the literature. Cholami-Shabami et al. had developed a 

cell-free viable approach to synthesize gold nanoparticles with the help of NADPH-dependent sulphite 

reductase enzyme, isolated and purified from Escherichia coli. [141]. These gold nanoparticles found to have 

strong inhibitory effect against the growth of various human pathogenic fungi [141]. Another interesting 

approach developed by Kas et al., was the synthesis of nanosilica-supported Ag nanoparticles using 

biosynthetic protocol [142].  

In recent research heterogeneous hybrid nanocatalysts are being developed using the metals in combination 

with protein and peptides. This technique involves the formation of metal NPs embedded in an enzymatic 

(protein/peptide) net and the development was done in in situ condition under very mild reaction. One 

such example is the development of nanocatalyst using the mixture of lipase from Candida antarctica fraction 

B (CAL-B) with a homogeneous aqueous solution of a noble metal salt (Ag+, Pd2+, or Au3+) [143]. This 
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new hybrid is unique in possessing both the metallic and enzymatic catalytic activities. In this process there 

was generation of small metal NPs. This process does not require any external reducing agent but exploite 

the reductive efficacy of the biomacromolecule (biomineralization). This biomacromolecule remains 

catalytically active even at the end of the synthesis [143]. Based on these strategies an interesting biosynthetic 

route for cost-effective productions of various metal NPs (Pd, Pt, and Ag) on the surface of fungal mycelia 

[144] was reported by Das et al. (2014). When the reduction of metal ions took place by means of this 

strategy, the size and shape can be varied depending on the type of the metal NPs. For example, “flower”-

like branched nanoparticles were obtained in the case of Pd and Pt, while Ag produced spheroidal 

nanoparticles [144].  

Another useful element of synthesizing precise and highly functionalized metal nanoparticles is the 

engineered proteins. For example, a small variant of protein A has been used as biotemplate in the one-

step synthesis and biofunctionalization of AuNPs [145]. This biotemplate is composed of thiolate ligand 

capable of interacting with the AuNP surface and controlling the nanoparticle nucleation and growth, thus 

allowing the nanoparticle size to be finely tuned. Jang et al. (2015) published a work on the synthesis of 

thin-walled (ca. 40 nm) SnO2 nanotubes functionalized with catalytic Pt and Au nanoparticles via a protein 

templating route [146]. This strategy helps in developing nanomaterials peptide conjugates with very high 

surface area-to-volume ratio which ultimately leads to superior catalytic performances [146,147].  

4 Healing of Wounds and Nanoparticles  

4.1 Process of Healing 

Healing is a complex process composed of a series of continuous as well as overlapping events. The events 

of healing include haemostasis, inflammation, proliferation, epithelialization, maturation, and remodeling 

of the wounded tissue [148] (Figure 1).  

 

Figure 1: The event of wound healing. 

  

Haemostasis is the event that occurs just after injury. The platelets located in the intravascular space get 

activated due to the exposure of sub-endothelial collagen leading to the formation of thrombin (23). 

Platelets play a very important role in the process of healing. At first there is activation of the coagulation 
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cascade. After which the formation of the fibrin fibres takes place. These fibres act as scaffolding for other 

cells that enter the wound later. Just after this the complement system joins the process of healing after 

which platelet degranulation occurs. Wound healing is a complex process which involves a series of 

components. Such components include cytokines, growth factors, and vasoactive substances from the 

platelet a-granules, platelet-derived growth factor (PDGF), transforming growth factor-ß (TGF-ß), 

fibroblast growth factor (FGF), endothelial growth factor (EGF), platelet-derived angiogenesis factor, 

serotonin, bradykinin, platelet-activating factor, thromboxane A2, platelet factor IV, prostaglandins, and 

histamine. The early events during the healing are initiated by these set of components [148,149]. 

The first event is inflammation which starts just after the injury at the site of wounding and lasts for up to 

6 days [150]. During inflammation the platelets release different growth factors which then diffuse into the 

surrounding tissues of the wound. These factors then chemotactically attract the inflammatory cells at that 

site. The first inflammatory cells that enter the wound are neutrophils and then monocytes. The activation 

of the inflammatory cells takes place by local mediators. A number of lysosomal enzymes are released by 

the activated neutrophils. Few such enzymes are elastase, neutral proteases, and collagenase. These enzymes 

proteolytically destroy the damaged components of extracellular matrix [150]. Monocytes play important 

role in host defense by acquiring the phenotype of macrophages [150]. In this phase of proliferation, the 

formation of the extra cellular matrix (ECM) starts with the beginning of angiogenesis. Fibroblasts and 

endothelial cells are the primary cells to take part in this process. The proliferation starts in response of the 

components released at the site of wounding. Growth factors, cytokines are responsible for the induction 

of proliferation. These components are released from macrophages, platelets and mesenchymal cells. The 

fibroblast activation and proliferation is actually induced by the PDGF, FGF, and EGF [151] after its arrival 

at the site of injury. Fibroblasts show predominant activities like migration and proliferation at 2-3 days of 

injury, after which collagen and glycosaminoglycans get released from this fibroblast cells. The release of 

these components is actually the response to macrophage-released growth factors, hypoxia and by-products 

of anaerobic metabolism. In combination of collagen and fibronectin new ECM gets formed. The 

formation of ECM is essential for the development of granulation tissue. This granulation tissue in turn 

fills the wound [148]. 

Fibroblast proliferation is accompanied by the phenomenon called Angiogenesis. In this process the 

nutrients and healing factors enter at the wound space. Angiogenesis is also important for the growth and 

development of the granulation tissue. The principle regulators of angiogenesis are FGF and vascular 

endothelial growth factor (VEGF). The first factor is released by the damaged endothelial cells and 

macrophages whereas the other is released by the keratinocytes and macrophages [148]. The maturation 

phase actually begins after three weeks of injury and it may take up to two years to be completed [152]. In 

the injured skin the arrangement of newly formed collagen fibres show random and disorganized 

orientation. Thus, the remodeling of the collagen fibers is necessary to help in organizing the collagen fiber 

into its lattice structure. This structural organization gradually increases the tensile strength of the scar 

tissue. However, the recovery never exceeds 80 percent of the strength of intact skin. A balance between 

the synthesis and degradation of collagen is required for the remodeling of the ECM. Both synthesis and 

degradation are enzyme induced processes. Different enzymes take part in this process like matrix 

metalloproteinases (MMPs), neutrophil released elastase and gelatinase, collagenases and stromelysins [153]. 

A Wound is said to be chronic if not healed within three months after injury. There are differences between 

the chronic and acute wound. A balance between the production and degradation of molecules responsible 

for healing is present in acute wounds but absent in chronic wound where the rate of degradation is high. 

The chronic wound bed compared to acute one has a higher concentration of proteases (such as MMPs) 

[154] but lower levels of growth factors and cytokines [155] when compared to acute wounds. In chronic 

wound the proteolytic activity is high and prolonged which may lead to the degradation of growth factors 

and thus the wound remains in the inflammatory stage for a longer period of time [156].  
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4.2 Nanoparticles in Healing Wounds 

Nanotechnology is the most growing and challenging field of research in modern science as formulated 

nanomaterials play crucial role in our daily life. Different types of nanomaterials have been incorporated in 

diverse applications of healthcare machinery and biomedicine. Varieties of products have been emerged 

due to the upscale research in nanotechnology creating a scope of application of these in the science of 

wound healing and tissue regeneration [157]. Silver is the most common anti-bacterial agent that is very 

frequently used for treating burns, open wounds, and other chronic wounds as well [158]. There are a 

number of evidences showing the role of AgNPs and their anti-microbial activity [159-164]. Topical 

administration of AgNPs is more efficient as an antimicrobial agent when compared to other test 

formulations. AgNPs can interact with the sulfur and phosphorus containing proteins of bacterial cell 

membranes even at a very low concentration and thus control bacterial colony. The particles have effective 

antimicrobial activity against Bacillus subtilis, E. coli, and S. Aureus and other skin pathogens [165,166]. In vivo 

studies revealed that silver nanoparticles can promote the healing process directly by reducing the cytokine-

modulated inflammation. Silver has the ability to induce neutrophil apoptosis and to decrease the MMPs 

activity with negative modulation on TGF-ß enhancing overall acceleration of wound healing with a 

reduction in hypertrophic scarring [167]. Silver ions can also promote the rate of proliferation and migration 

of keratinocytes and stimulate the differentiation of fibroblasts into myofibroblasts which in turn promote 

wound contraction [168]. As the use of any metal in any form has the chance of carrying possible side 

effects one must investigate the biosafety of that compound before considering it in therapeutic application. 

In case of silver nanoparticle, it has an acceptable rate of biocompatibility [169,170]. 

According to Leu et al. (2012) gold nanoparticle (AuNPs) is one of the promising biologically active 

nanomaterials [171] when conjugated with antioxidants rich compounds (epigallocatechin gallate and a-

lipoic acid) to accelerate wound healing in mice [171]. The triggering properties of anti-oxidant with the 

AuNPs actually promote the accelerated healing after its topical application on both normal and diabetic 

wounds [172] Copper (Cu), titanium Dioxide (TiO2) and zinc Oxide (ZnO) nanoparticles are also effective  

against E. coli and S. aureus, and other skin pathogens that cause diabetic wound, foot-ulcer and burn wound 

infections [173-175]. Two most widely used nanoparticles in cosmetic and pharmaceutical industry are TiO2 

and ZnO as they act as UV protectors as well as wound healer [176]. TiO2 nanoparticles synthesized using 

Origanum vulgare when investigated for healing efficacy on excision wound model, it revealed significant 

wound healing activity [177].  

Most modern tissue engineering techniques involve nano-fibers and nanoparticles for regeneration or 

repairing of wounds. This technique involves the construction of biocompatible scaffold combined with 

bioactive molecules. Electro spun nano-fibers are provided with large surface area and porosity with 

permeability for oxygen and water to make it efficient for protection of the wound from bacterial infection. 

These properties of electro spun nano-fibers make them suitable for dressing of wounds like diabetic ulcers 

and burns. Other biomaterials like Chitosan, Collagen, and Poly lactic acid have also been tested on animal 

wound models, revealed an increased rate of wound contraction and epithelialization [178]. These 

biomaterials also found to possess good anti-bacterial activity [179]. Chong et al. proposed a cost effective 

nanofibrous scaffold consisting of electro spun onto polyurethane dressing for healing of dermal wounds 

[180,181]. Tissue engineered nanoparticles can be found as polymer and carbon-matrix nano composites 

[182]. Nanocarriers, nanosensors are mainly developed by using carbon nano tubes. These nanomaterials 

are useful in tissue engineering as they promote wound healing [183]. NO (Nitric oxide) is a powerful free 

radical and found to work as a wound healing agent. Its activity is observed in the inflammatory as well as 

in the proliferative phase of healing. Evidences showed that the antibacterial activities of the NO-

nanoparticles enhance the wound healing [184-186]. Gold nanodots fabricated with antimicrobial peptides 

found to possess inhibitory effect on the growth of multi drug-resistant bacteria and thus promote wound 

healing in animal model [187]. Curcumin is known for its anti-biotic, anti-viral and antioxidant properties 
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[188,189]. Investigation revealed that the delivery of Curcumin using nanomaterials as vehicles in wound 

healing had yielded good result.  

5 Possible Mechanism of Action of Green Peptide Nanomaterial in Wound Regeneration  

Infection during the time of healing is the most potent interference causing delay in wound closure and 

exacerbating the tissue damage. Wound care is a serious healthcare concern as it is often found that the 

process of healing become complicated due to prolonged inflammation and bacterial infection. Appropriate 

antimicrobial therapy of the wound includes controlling of colonization and proliferation of the pathogens, 

including multidrug-resistant organisms [190.191]. Bioactive peptides are important in therapeutics as they 

promote wound healing. They not only prevent microbial infection but also induce the growth of new 

blood vessels and epithelial tissue. They promote different physiological processes required for fast healing 

like homeostasis, defense, growth, differentiation, and senescence. The delivery of green-peptide therapy 

via nanoparticles offers great potential advantages in modulating the healing process in a far better way. 

Now if the release of the bioactive compound can be done in a more precise way then it will decrease the 

number of doses required to achieve the desired clinical effect. Thus, there will be lesser chance of 

development of antibiotic resistance and physiological toxicity. The determinants for the in vivo delivery of 

the peptide nanoparticles are the physicochemical properties of nanoparticulate drug delivery systems (size, 

surface charge, and nature etc.). It is a well-known fact that 20–200nm particles are suitable for delivery of 

therapeutics. The major disadvantage of larger particles is that they can be uptaken quickly by the reticulo-

endothelial system followed by rapid clearance from circulation. However, in case of smaller particles they 

tend to cross the fenestration in the hepatic sinusoidal endothelium, resulting hepatic accumulation.  

On the basis of the requirement several options are available for the improvement of the quality, selectivity, 

durability, and safety of the green peptides. For example, the functional and immunological properties can 

be improved by partial hydrolysis of the peptide molecules as the resulting hydrolysate is more useful as 

pharmaceutical ingredient [192,193]. Bioactive peptides can be computationally modeled, genetically 

manipulated, and expressed in different systems to serve a wide range of practical purpose. Other than 

antimicrobial efficacy several other intriguing functions like opioid, antithrombotic, immunomodulatory, 

and antihypertensive are also emerging with the advancement of research [193-195] as a result of which the 

peptides are becoming more suitable for accelerated wound recovery. Thus, it can be said that these 

bioactive peptides are the natural alternatives with potential to be used in a variety of applications [194,195].  

The numbers of innovative nano therapies in the field of wound healing are increasing day by day and most 

of them are currently under clinical investigation. Different nanoscale strategies have been developed to 

target different phases of wound recovery. The two major categories of nanomaterials used in wound 

healing are (1) nanomaterials that exhibit intrinsic properties beneficial for wound treatment and (2) 

nanomaterials employed as delivery vehicles for therapeutic agents (23,197) such as green peptides. Chen 

et al. used gold nanodots functionalized using antimicrobial peptides in rodent wound model to inhibit the 

growth of drug-resistant bacteria and promote healing (198). The functionalization was done by self-

assembly of cyclic lipopeptide surfactin (SFT) on gold nanodots by hydrophobic interaction with 1-

dodecanethiol (DT) molecules that cap the gold nanodots. This functionalized nanoparticle was found to 

hold higher antibacterial potency against Gram-negative and Gram-positive bacteria than free SFT. The 

enhanced inhibitory effect of the compound was higher in comparison to the peptidic antibiotic alone was 

because of the ability of the designed nanoparticles to disintegrate the bacterial membrane. Gold 

nanoparticles (AuNPs) combined with antioxidants like epigallocatechinegallate (EGCG) and a-lipoic acid 

(ALA) was tested on diabetic ulcer wounds. These nanoparticles showed accelerated healing by the 

modulation of inflammation and angiogenesis. The application of this composition on the wounds also 

stimulates an increase in the skin absorptivity of this nanoscale mixture. The majority of these nanoparticle 

carriers have been used for the delivery of therapeutic agents with antibacterial properties and thus the 

antimicrobial peptides derived from plants are so crucial to identify and develop.  
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6 Conclusion 

Faster healing by means of inhibiting microbial infection with accelerated wound closure without scar 

formation can only be achieved by implementation of novel strategies. Nanotechnology is the field that is 

growing constantly and thus also revolutionizing the therapeutics. Treatment and management of wound 

care is getting better due to the incorporation of the novel solutions using biomaterials and theranostic 

nanoparticles. Thus, it can be said that the Nanotechnology-based therapy is the possible next-generation 

therapy for the advancement of wound healing to cure chronic wounds. Nowadays, the effectiveness of the 

antibiotics is declining, and thus antimicrobial peptides have become one of the considerable interests of 

the scientists of today. These peptides are proved to have potential as the broad-spectrum antibiotics thus 

have usefulness as novel therapeutic agents. But for the accurate application it is important to know the 

behavior and toxicity of these nanoscale products in the human body and the real hurdle is to gather enough 

information regarding this. Moreover, we need to develop better synthetic tools along with analytical 

methods which will allow us to apply the nanotechnology-based approaches to the clinic in real situations. 

We also need to put great efforts to arm chronic wound therapies by making them more site-specific, we 

also need to increase the target efficiency of these nanoproducts so that undesirable events can easily be 

avoided. Approach of research also need to be designed in such a way that it can help to overcome the 

interferences for the nanosystems to perform their biological functions in the tissues. 
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