Evaluation of Fungal Activity Through In Silico Analysis of Medicinal Plants Against Exophiala Jeanselmei





Phaeohyphomycosis is a fungal infectious disease commonly called as dermal problem which is caused by dematiaceous fungi, Exophiala jeanselmei. Chitin was the main component of fungal cell and no effective inhibitor was identified still in chitin synthase I. The protein chitin synthase I play a major role in drug metabolism as well as signal processing molecule and therefore have been targeted in the present study. The medicinal plants being a solution for several human ailments, also act as a reservoir for secondary metabolites, has taken its credit as a cure from our ancient times. The biological activity of the Myricetin was analysed using the pass online tool. The value of Probability to be active (Pa) = 0.241 Probability to be inactive (Pi) = 0.021. The several compounds retrieved from the plants Acalypha indica, Achyranthus aspera, Brassica niger, Cassia auriculata, Cleome gynandra, Clitoria ternatea, Ipomoea hederaceae, Leucas aspera, Mimosa pudica, Phyllanthus niruri, Ocimum basilicum, Ocimum sanctum, Tridax procumbens, Vitex negundo and Waltheria indica were analyzed for its possible significant interaction with the target protein using molecular docking studies. The compound Myricetin had Binding energy of -7.32 Kcal/mol and formed hydrogen bonds with the residue HIS 29 showing the bond length of 1.8 Å and residue THR 3 showing the bond length of 1.9 Å. The future perspective of the study is to determine the stability of the protein-compound interaction through docking studies.


Phaeohyphomycosis, medicinal plants, molecular docking


Download data is not yet available.


N. M. Luscombe, D. Greenbaum, and M. Gerstein, “What is bioinformatics? An introduction and overview,” Yearb. Med. Inform., vol. 10, no. 01, pp. 83–100, 2001, doi: 10.1055/s-0038-1638103.

S. L. Lyantagaye, “Current Status and Future Perspectives of Bioinformatics in Tanzania,” vol. 39, no. 1, pp. 1–11, 2013.

F. S. Collins, A. Patrinos, E. Jordan, A. Chakravarti, R. Gesteland, and L. R. Walters, “New goals for the U.S. Human Genome Project: 1998-2003,” Science (80-.). vol. 282, no. 5389, pp. 682–689, 1998, doi: 10.1126/science.282.5389.682.

D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, and T. E. Ferrin, “A Geometric Approach to Macromolecule-Ligand Interactions,” 1982.

L. Z. Benet, C. M. Hosey, O. Ursu, and T. I. Oprea, “BDDCS, the Rule of 5 and drugability,” Adv. Drug Deliv. Rev., vol. 101, pp. 89–98, 2016, doi: 10.1016/j.addr.2016.05.007.

P. Kettlewell, M. R. Mcginnis, and G. T. Wilkinson, “Phaeohyphomycosis caused by Exophiala spinifera in two cats,” Med. Mycol., vol. 27, no. 4, pp. 257–264, 1989, doi: 10.1080/02681218980000341.

N. Brooijmans and I. D. Kuntz, “Molecular recognition and docking algorithms,” Annu. Rev. Biophys. Biomol. Struct., vol. 32, pp. 335–373, 2003, doi: 10.1146/annurev.biophys.32.110601.142532.

J. Wereszczynski and J. A. McCammon, Computational Drug Discovery and Design, ed R Baron. 2012.

E. S. Jacobson, “Pathogenic roles for fungal melanins,” Clin. Microbiol. Rev., vol. 13, no. 4, pp. 708–717, 2000, doi: 10.1128/CMR.13.4.708-717.2000.

C. Rajendran, B. K. Khaitan, R. Mittal, M. Ramam, M. Bhardwaj, and K. K. Datta, “Phaeohyphomycosis caused by Exophiala spinifera in India1,” Med. Mycol., vol. 41, no. 5, pp. 437–441, Oct. 2003, doi: 10.1080/1369378031000153820.

M. G. Rinaldi, “PHAEOHYPHOMYCOSIS,” vol. 14, no. 1, pp. 147–153, 1996.

G. M. Morris, R. Huey, and A. J. Olson, UNIT using AutoDock for ligand-receptor docking, no. SUPPL. 24. 2008.

L. Ajello, “Hyalohyphomycosis and phaeohyphomycosis: Two global disease entities of public health importance,” Eur. J. Epidemiol., vol. 2, no. 4, pp. 243–251, 1986, doi: 10.1007/BF00419488.

D. E. Bostock, “Exophiala cat d. e. bostock,” vol. 92, pp. 479–482, 1982.

A. Kebriaee-zadeh, “Overview of National Drug Policy of Iran,” Iran. J. Pharm. Res. IJPR, pp. 1–2, 2010, doi: 10.22037/ijpr.2010.48.

W. M. Haschek and O. B. Kasali, “A case of cutaneous feline phaeohyphomycosis caused by Phialophora gougerotti,” Cornell Vet., vol. 67, no. 4, p. 467—471, Oct. 1977, [Online]. Available: http://europepmc.org/abstract/MED/25087299.

G. Cauwenbergh, “Treatment of Phaeohyphomycosis and Pityriasis Versicolor,” in Dimorphic Fungi in Biology and Medicine, H. Vanden Bossche, F. C. Odds, and D. Kerridge, Eds. Boston, MA: Springer US, 1993, pp. 405–411.

Sathyabhama, S. Bhageerathi, and S. Raj, “Mycetoma caused by Exophiala jeanselmei,” J. Acad. Clin. Microbiol., vol. 16, no. 2, pp. 94–95, Jul. 2014, doi: 10.4103/0972-1282.144734.

Davidson-Hunt, “Ecological Ethnobotany: Stumbling Toward New Practices and Paradigms,” MASA J., vol. 16, no. 1, pp. 1–13, 2000.

Jianling Wang; Laszlo Urban, “The impact of early ADME profiling on drug discovery and,” Drug Discov. World, pp. 73–86, 2004.

M. S. Ali-Shtayeh, R. M.-R. Yaghmour, Y. R. Faidi, K. Salem, and M. A. Al-Nuri, “Ali-Shtayeh1998.Pdf,” vol. 60, p. 7, 1998.

A. Allouche, “Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares,” J. Comput. Chem., vol. 32, pp. 174–182, 2012.

M. Tahir ul Qamar, S. M. Alqahtani, M. A. Alamri, and L. L. Chen, “Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants,” J. Pharm. Anal., vol. 10, no. 4, pp. 313–319, 2020, doi: 10.1016/j.jpha.2020.03.009.

F. Lopez-Vallejo et al., “Integrating Virtual Screening and Combinatorial Chemistry for Accelerated Drug Discovery,” Comb. Chem. High Throughput Screen., vol. 14, no. 6, pp. 475–487, 2011, doi: 10.2174/138620711795767866.

Y. Liu, Z. Dao, C. Yang, Y. Liu, and C. Long, “Medicinal plants used by Tibetans in Shangri-la, Yunnan, China,” J. Ethnobiol. Ethnomed., vol. 5, pp. 1–10, 2009, doi: 10.1186/1746-4269-5-15.

W.L. DeLano. “The PyMOL molecular graphics system”. http://www.Pymol.org. 2002.

Pauli et al., “Discovery of new inhibitors of mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 2390–2401, 2013, doi: 10.1021/ci400202t.

M. S. Ali-Shtayeh and S. I. Abu Ghdeib, “Antifungal activity of plant extracts against dermatophytes,” Mycoses, vol. 42, no. 11–12, pp. 665–672, 1999, doi: 10.1046/j.1439-0507.1999.00499.x.

M. Negri, T. P. Salci, C. S. Shinobu-Mesquita, I. R. G. Capoci, T. I. E. Svidzinski, and E. S. Kioshima, “Early state research on antifungal natural products,” Molecules, vol. 19, no. 3, pp. 2925–2956, 2014, doi: 10.3390/molecules19032925.

R. A. Susidarti, Wahyono, and Yamin, “Isolation and Identification of Antibacterial Compound from the leaves of Muehlenbeckia platyclada Meissn,” Int. J. Adv. Pharm. Sci., vol. 2, no. 1, pp. 40–44, 2011.

D. K. Raja, N. S. Jeganathan, and R. Manavalan, “In vitro antimicrobial activity and phytochemical analysis of Cassia auriculata Linn,” Int. Curr. Pharm. J., vol. 2, no. 6, pp. 105–108, 2013, doi: 10.3329/icpj.v2i6.14869.

N. L. Sharma, V. Mahajan, R. C. Sharma, and A. Sharma, “Subcutaneous pheohyphomycosis in India - A case report and review,” Int. J. Dermatol., vol. 41, no. 1, pp. 16–20, 2002, doi: 10.1046/j.1365-4362.2002.01337.x.

M. Tahir ul Qamar et al., “Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus,” Sci. Rep., vol. 9, no. 1, pp. 1–16, 2019, doi: 10.1038/s41598-018-38450-1.

Q. Zhang et al., “In silico screening of anti-inflammatory constituents with good drug-like properties from twigs of Cinnamomum cassia based on molecular docking and network pharmacology,” Trop. J. Pharm. Res., vol. 18, no. 10, pp. 2125–2131, 2019, doi: 10.4314/tjpr.v18i10.18.

S. Ahmed and A. M. Shohael, “In silico studies of four anthraquinones of senna alata l. As potential antifungal compounds,” Pharmacologyonline, vol. 2, pp. 259–268, 2019.






Graduate Research Articles

How to Cite

V. S. . Vel and A. Arunprasath, “Evaluation of Fungal Activity Through In Silico Analysis of Medicinal Plants Against Exophiala Jeanselmei”, Adv. J. Grad. Res., vol. 9, no. 1, pp. 81-95, Jan. 2021.