Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium

  • Arumona Edward Arumona University of Agriculture, Makurdi, Benue
  • Amah A N University of Agriculture, Makurdi, Benue

Abstract

In this work, the band gap of Iron(II) disulfide and Tellurium were computed using the density functional theory with different meta-GGA functionals. The results showed that the meta-GGA functional M06L gave the closest value of the band gap as 0.96 eV compared to the experimental value of 0.95 eV for Iron(II) disulfide while the meta-GGA functional BJ06 gave the closest value of the band gap as 0.339 eV compared to the experimental value of     0.335 eV for Tellurium. This study showed that the meta-GGA functionals M06L and BJ06 can effectively predict the band gap of Iron(II)disulfide and Tellurium. In general, the use of meta-GGA functionals can be extended to compute the band gap of other semiconductors.

Keywords: Iron (II) disulfide, Tellurium; Band gap, Density functional theory, meta-GGA functional, Semiconductor

Downloads

Download data is not yet available.

Author Biography

Amah A N, University of Agriculture, Makurdi, Benue

Associate Professor, Physics Department

 

References

[1]       A. Schlegel, and P.Watchter, “Optical Properties, Phonons and Electronic Structure of Iron Pyrite”,  Environmental Science and Technology, vol. 42, no.6, pp.2168–2174, 1976.


[2]       V. M. Fthenakis, K.C. Hyung, E. Alsema, “Emissions from Photovoltaic Life Cycles”, Environmental Science and Technology, vol. 42 no.6, pp.2168–2174, 2008.


[3]       K.Zweibel, ” The Impact of Tellurium Supply on Cadmium Telluride Photovoltaics”, Science, vol.328 no.5979, pp. 699–701, 2010.


[4]       Y. Zhao, and D.G. Truhlar, “Calculation of Semiconductor Band Gaps with the M06-L Density Functional”, The Journal of Chemical Physics, vol. 130, no.074103, pp. 1-3, 2009.


[5]       Vijay et al., “Phase Stability and Thermoelectric Properties of the Mineral FeS2  An Ab-inito Study”, 2013.


[6]       Qiu et al., “Density Functional Theory Calculation of Equilibrium Geometry and Electronic Structure of Pyrite”, Trans. Nonferrous Met. Soc. China, vol. 11, no.4, pp.583-586, 2001.


[7]       Y.N. Zhang, J. Hu, and R.Q .Wu, “Density Functional Theory (DFT) Studies for Iron Pyrite”, 2011.


[8]       H.G. Junginger, “Electronic Band Structure of Tellurium”, Solid State Communications, vol.5, no.7, pp. 509-511, 1967, doi: 10.1016/0038-1098(67)90534-0


[9]       C.J. Cramer, “Essentials of Computational Chemistry”, 2nd Ed. John Wiley & Sons, 2004.


[10]     Gonze, X., et al., “ABINIT : First-Principles Approach to Material and Nanosystem Properties”, Computer Physics Communications, vol. 180, no.12, pp. 2582-2615 , 2009.


[11]     R.M. Martins, “Electronic Structure: Basic Theory and Practical Methods”, Cambridge University Press, 2004.


[12]     T. Bjorkman, “CIF2CELL: Generating Geometries for Electronic Structure Programs”, Computer Physics Communications, vol. 182, no.5, pp.1183-1186, 2011.


[13]     G. Brostigen, and A. Kjekshus,” Redetermine Crystal Structure of FeS2 (Pyrite)”, Acta Chemica Scandinavica, vol. 23, no.1, pp.2186-2188, 1969. 


[14]     Bradley, A.J. The Crystal Structures of the Rhombohedral Forms of Selenium and Tellurium. Philosophical Magazine, vol. 48, no.6, pp. 477-496, 1924.


[15]     J.Tao,  J.P.Perdew, V.N.Staroverov, and  G.E. Scuseria, “Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids”,  Physical Review Letters, vol. 91, no.14, pp. 146401, 2003.


[16]     Z. H.Yang, et al.,” More Realistic Band Gaps from Meta-Generalized Gradient Approximation: Only In A Generalized Kohn-Sham Scheme,” Phys. Rev. B  93, 205205, 2016.


 [17]    M.Ernzerhof , and  G.E. Scuseria, “Kinetic Energy Density Dependent Approximations to the Exchange Energy”, The Journal of Chemical Physics, vol. 111, no.3, pp. 911-916, 1999.


[18]     Y.Zhao, and D.G.  Truhlar, “A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent   Interactions”, The Journal of Chemical Physics, vol. 125, no.91, pp. 194101, 2006. 


[19]     V. T. Voorhis, and G.E. Scuseria, “A Novel Form for the Exchange-Correlation Energy Functional”, Journal of Chemical Physics, vol. 109, no.2, pp. 400-410, 1998


[20]     A. D. Boese, and N.C. Handy, “New Exchange-Correlation Density Functionals: The Role of the Kinetic-Energy Density”, Journal of Chemical Physics, vol. 116, no.22, pp. 9559-9570.  2002.


[21]     A. D.Becke, and M. R.  Roussel,” Exchange Holes in Inhomogeneous Systems: A Coordinate-Space Model”, Physical Review A, vol. 39, no.8, pp. 3761-3768, 1989.


[22]     A. D.Becke, and  E.R. Johnson, “ A Simple Effective Potential for Exchange”,  Journal of  Chemical Physics, vol. 124, no.22, pp. 2211101, 2006.


[23]     F.Tran, and  P. Blaha, “Accurate Band Gaps of Semiconductors and Insulators with a  Semilocal Exchange-Correlation Potential”, Physical Review Letters, vol. 102, no.22,  pp. 226401, 2009.


 [24]    E. Räsänen, S.Pittalis, and  C.R. Proetto, “Universal Correction for the Becke–Johnson Exchange Potential”,  Journal of Chemical Physics, vol. 132, no.4, pp. 044112, 2010.

Published
2017-11-18
Section
Graduate Research Articles
How to Cite
[1]
A. Arumona and A. N, “Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium”, Advanced Journal of Graduate Research, vol. 3, no. 1, pp. 41-46, Nov. 2017.