Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium

  • Arumona Edward Arumona University of Agriculture, Makurdi, Benue
  • Amah A N University of Agriculture, Makurdi, Benue


In this work, the band gap of Iron(II) disulfide and Tellurium were computed using the density functional theory with different meta-GGA functionals. The results showed that the meta-GGA functional M06L gave the closest value of the band gap as 0.96 eV compared to the experimental value of 0.95 eV for Iron(II) disulfide while the meta-GGA functional BJ06 gave the closest value of the band gap as 0.339 eV compared to the experimental value of     0.335 eV for Tellurium. This study showed that the meta-GGA functionals M06L and BJ06 can effectively predict the band gap of Iron(II)disulfide and Tellurium. In general, the use of meta-GGA functionals can be extended to compute the band gap of other semiconductors.

Keywords: Iron (II) disulfide, Tellurium; Band gap, Density functional theory, meta-GGA functional, Semiconductor

Author Biography

Amah A N, University of Agriculture, Makurdi, Benue

Associate Professor, Physics Department



[1]       A. Schlegel, and P.Watchter, “Optical Properties, Phonons and Electronic Structure of Iron Pyrite”,  Environmental Science and Technology, vol. 42, no.6, pp.2168–2174, 1976.

[2]       V. M. Fthenakis, K.C. Hyung, E. Alsema, “Emissions from Photovoltaic Life Cycles”, Environmental Science and Technology, vol. 42 no.6, pp.2168–2174, 2008.

[3]       K.Zweibel, ” The Impact of Tellurium Supply on Cadmium Telluride Photovoltaics”, Science, vol.328 no.5979, pp. 699–701, 2010.

[4]       Y. Zhao, and D.G. Truhlar, “Calculation of Semiconductor Band Gaps with the M06-L Density Functional”, The Journal of Chemical Physics, vol. 130, no.074103, pp. 1-3, 2009.

[5]       Vijay et al., “Phase Stability and Thermoelectric Properties of the Mineral FeS2  An Ab-inito Study”, 2013.

[6]       Qiu et al., “Density Functional Theory Calculation of Equilibrium Geometry and Electronic Structure of Pyrite”, Trans. Nonferrous Met. Soc. China, vol. 11, no.4, pp.583-586, 2001.

[7]       Y.N. Zhang, J. Hu, and R.Q .Wu, “Density Functional Theory (DFT) Studies for Iron Pyrite”, 2011.

[8]       H.G. Junginger, “Electronic Band Structure of Tellurium”, Solid State Communications, vol.5, no.7, pp. 509-511, 1967, doi: 10.1016/0038-1098(67)90534-0

[9]       C.J. Cramer, “Essentials of Computational Chemistry”, 2nd Ed. John Wiley & Sons, 2004.

[10]     Gonze, X., et al., “ABINIT : First-Principles Approach to Material and Nanosystem Properties”, Computer Physics Communications, vol. 180, no.12, pp. 2582-2615 , 2009.

[11]     R.M. Martins, “Electronic Structure: Basic Theory and Practical Methods”, Cambridge University Press, 2004.

[12]     T. Bjorkman, “CIF2CELL: Generating Geometries for Electronic Structure Programs”, Computer Physics Communications, vol. 182, no.5, pp.1183-1186, 2011.

[13]     G. Brostigen, and A. Kjekshus,” Redetermine Crystal Structure of FeS2 (Pyrite)”, Acta Chemica Scandinavica, vol. 23, no.1, pp.2186-2188, 1969. 

[14]     Bradley, A.J. The Crystal Structures of the Rhombohedral Forms of Selenium and Tellurium. Philosophical Magazine, vol. 48, no.6, pp. 477-496, 1924.

[15]     J.Tao,  J.P.Perdew, V.N.Staroverov, and  G.E. Scuseria, “Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids”,  Physical Review Letters, vol. 91, no.14, pp. 146401, 2003.

[16]     Z. H.Yang, et al.,” More Realistic Band Gaps from Meta-Generalized Gradient Approximation: Only In A Generalized Kohn-Sham Scheme,” Phys. Rev. B  93, 205205, 2016.

 [17]    M.Ernzerhof , and  G.E. Scuseria, “Kinetic Energy Density Dependent Approximations to the Exchange Energy”, The Journal of Chemical Physics, vol. 111, no.3, pp. 911-916, 1999.

[18]     Y.Zhao, and D.G.  Truhlar, “A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent   Interactions”, The Journal of Chemical Physics, vol. 125, no.91, pp. 194101, 2006. 

[19]     V. T. Voorhis, and G.E. Scuseria, “A Novel Form for the Exchange-Correlation Energy Functional”, Journal of Chemical Physics, vol. 109, no.2, pp. 400-410, 1998

[20]     A. D. Boese, and N.C. Handy, “New Exchange-Correlation Density Functionals: The Role of the Kinetic-Energy Density”, Journal of Chemical Physics, vol. 116, no.22, pp. 9559-9570.  2002.

[21]     A. D.Becke, and M. R.  Roussel,” Exchange Holes in Inhomogeneous Systems: A Coordinate-Space Model”, Physical Review A, vol. 39, no.8, pp. 3761-3768, 1989.

[22]     A. D.Becke, and  E.R. Johnson, “ A Simple Effective Potential for Exchange”,  Journal of  Chemical Physics, vol. 124, no.22, pp. 2211101, 2006.

[23]     F.Tran, and  P. Blaha, “Accurate Band Gaps of Semiconductors and Insulators with a  Semilocal Exchange-Correlation Potential”, Physical Review Letters, vol. 102, no.22,  pp. 226401, 2009.

 [24]    E. Räsänen, S.Pittalis, and  C.R. Proetto, “Universal Correction for the Becke–Johnson Exchange Potential”,  Journal of Chemical Physics, vol. 132, no.4, pp. 044112, 2010.

Graduate Research Articles
How to Cite
A. Arumona and A. N, “Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium”, Advanced Journal of Graduate Research, vol. 3, no. 1, pp. 41-46, Nov. 2017.