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1 Introduction 

Since its development in 1960, fuel cell is considered to have the potential to replace the current less efficient 

power generation technologies [1]–[3]. This has led to an extensive research and development in the field 

of fuel cells [4] [5] [6]. It finds its application in power generation, transport and as portable power, 

AB S T R A CT  

Increasing greenhouse effect due to the burning of fossil fuels 

has stirred the attention of researchers towards cleaner and 

efficient technologies. Direct carbon fuel cell (DCFC) is one such 

emerging technology that could generate electricity from solid 

carbon like coal and biogas in a more efficient and 

environmental-friendly way. The mechanism involves 

electrochemical oxidation of carbon to produce energy and 

highly pure carbon dioxide. Due to higher purity, the produced 

carbon dioxide can be captured easily to avoid its release in the 

environment. The carbon dioxide is produced in a gaseous state 

while the fuel used is in a solid state. Due to different phases, all 

of the fuel can be recovered from the cell and can be reused, 

ensuring complete (100%) fuel utilization with no fuel losses. 

Moreover, DCFC operates at a temperature lower than 

conventional fuel cells. The electric efficiency of a DCFC is 

around 80% which is nearly double the efficiency of coal thermal 

plant. In addition, DCFC produces pure carbon dioxide as 

compared to the thermal power plant which reduces the cost of 

CO2 separation and dumping. In different types of DCFCs, 

molten carbon fuel cell is considered to be superior due to its low 

operating temperature and high efficiency. This paper provides a 

comprehensive review of the direct carbon fuel cell technology 

and recent advances in this field. The paper is focused on the 

fundamentals of fuel cell, history, operating principle, its types, 

applications, future challenges, and development. 
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producing a few watts to multi-megawatt of energy depending upon the dimensions and type of the fuel 

cell [1]. Mostly, cells are connected together in series or parallel combinations to provide desire power and 

voltage to the system. Different fuel cells operate at different temperatures ranging from room temperature 

to temperatures as high as 1000°C. As a result, a variety of electrodes, electrolytes and other fabrication 

materials are available for construction and control of cell properties [7]. When compared with conventional 

heat engines, fuel cells have high theoretical efficiencies since their performance do not depend on 

temperature or pressure gradient. Moreover, lower emissions due to separate fuel and air chambers make 

fuel cells environmental friendly [8] . Coal is the second largest source of energy with significant utilization 

in thermal power plants for electricity generation [9]. Figure 1 shows the annual share of coal in electricity 

generation in U.S. However, the efficiency of these thermal power plants is around 40% accompanied by 

high carbon dioxide (CO2) emissions. Therefore, significant improvements are needed in thermal power 

plants to optimize the coal consumption along with reduced environmental effects [10]. This can be done 

by improving the conversion technologies for coal fuel and enhancing the efficiencies of thermal power 

plants [11], [12]. Different systems have been proposed to overcome energy crisis and to improve the 

carbon capturing techniques. In the quest of more efficient and environmental friendly technologies, carbon 

fuel cells appears to be most promising and emerging technology [13] [14]. 

 

 

Figure 1: Annual share of total U.S. electricity generation by source [15] 

A carbon fuel cell is an advanced form of fuel cell that utilizes carbon rich fuel to produce energy [16]. Solid 

carbon like coal and biomass is used to produce electricity in a more efficient and cleaner way [17]–[20]. An 

innovation in the electrodes, electrolyte and fuel allows nearly complete combustion of carbon fuel 

producing highly pure carbon dioxide (CO2). Moreover, they operate at relative lower temperatures and 

consumes readily available carbon based fuels, making the technology more feasible to implement [20]–

[22]. Although direct carbon fuel cells (DCFCs) are still at initial stage of development but they have a great 

potential to be the future power generation technology. This is because of the increasing concern on global 

warming and air pollution combined with the resources of coals available to be used for energy generation.  

The theoretical efficiencies of direct carbon fuel cells is around 100% with actual system efficiency 

calculated to be more than 60% [23]. This efficiency is higher than other fuel cells and twice to that of a 

conventional thermal power plant. With increasing energy demands due to increase in population more 

efficient power generation technologies are required to meet the growing needs of energy. Figure 2 shows 

an expected increase of 1.5 to 3% energy demand by 2050.  

Moreover, this technology reduces the greenhouse gas emissions by more than 50%. DCFCs have many 

benefits however there are some major challenges including: mode of solid fuel delivery to electrode 

electrolyte interface, corrosion of cell components, fuel processing and fuel quality requirements, overall 

https://journals.aijr.in/index.php
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systems design, degradation rates and causes, improvement in materials performance and power densities 

[24]. 

 

 

Figure 2: Estimated world energy demand (Millions of barrels per day of oil equivalent) [8] 

In this paper a detailed review is performed on DCFC. The operating principle for a DCFC is actually based 

on electrochemical conversion of carbon to carbon dioxide. This conversion method makes them a cleaner 

technology that is discussed in this paper along with types of DCFCs, their fuels, application and challenges 

the technology is currently facing.  

2 Direct Carbon Fuel Cell 

Since the discovery of direct carbon fuel cell by Sir William Grove in 1839, researchers are trying to 

fabricate the perfect DCFC. In 1896, first direct carbon fuel cell was developed by an American 

Engineer Dr. William W. Jacques using steel pot filled with molten sodium hydroxide and carbon rod. 

The carbon rod acted as anode as well as fuel producing carbon dioxide. For reaction, oxygen was 

provided with air that was bubbled through the molten electrolyte, where the steel pot acted as a cathode. 

This cell is shown in Fig. 3.  

 
Figure 3: Direct carbon fuel cell by Dr. Jacques [25] 

https://journals.aijr.in/index.php
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Jacques operated the direct carbon fuel cell for different materials of cathode and electrolyte to find the 

optimum design parameters. Using his most efficient cell, he forms a combination of around 100 cell in 

series to generate around 1kW of electricity. He claimed the efficiency of the cell to be around 82% [25]. 

During 1970s, Dr. Robert Weaver working at Stanford Research Institute proved that carbon can undergo 

electrochemical oxidation thus supported the direct carbon fuel cell technology. Later they also tested 

different types of carbon and found coal based anode to be most active in electrochemical reaction [26] as 

depicted in Fig. 4. 

 
Figure 4: Performance of different carbons in a direct carbon fuel cell [27] 

2.1  Operating Principle 

Direct carbon fuel cells directly convert the chemical energy of carbon fuel to electricity without changing 

the phase of carbon rich fuel. It is basically an electrochemical reaction taking place in an electrochemical 

cell. Oxidation of fine carbon particles in electrochemical cell at high temperature of 600 – 900 0C produced 

highly pure carbon dioxide CO2 along with energy. The overall reaction is: 

C + O2 → CO2 

The reaction mechanism at anode is more complex for solid carbon fuel as compared to gas fuel [28]. The 

reactions at anode are as follow 

C + CO2 ↔ 2CO                              (1) 

O−2 + CO ↔ CO2 + 2e−                             (2) 

Reaction (1) is known as Boudouard reaction while reaction (2) electrochemical reaction of carbon 

monoxide at anode triple phase boundary. In a study by Gür and Huggins [29] yttria-stabilized-zirconia 

(YSZ) tube with Platinum coated electrodes were used to find reactions on anode as: 

2O−2 ↔ O2 + 4e− 

C + O2 ↔ CO2 

2C + O2 ↔ 2CO 

For discharging of DCFC, the electrochemical reactions taking place at the anode of the cell were studied 

by Liu et al. [30] as: 

C + 2O-2 ↔ CO2 + 4e− 

C + CO2 ↔ 2CO 

O-2 + CO ↔ CO2 + 2e− 

Similarly, Ihara et al. [31], [32] proposed the electrochemical reactions for rechargeable carbon fuel cell as: 

C + 2O-2 ↔ CO2 + 4e− 

C + O-2 ↔ CO + 2e 

https://journals.aijr.in/index.php
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Almost pure carbon dioxide is produced as the result of above mention reactions, provided the fuel used 

has high purity of carbon. This carbon dioxide can be easily captured and disposed without any need for 

costly gas separation technologies. 

2.2 Design and Operation 

A direct carbon fuel cell consists of an anode and cathode pack in an electrolyte. The assembly is quite 

simple as shown in Fig. 5. The anode is actually a carbon rod that also act as a fuel while cathode is of 

metallic nature usually an iron–titanium alloy. The electrolyte used can be of different types depending upon 

the nature of direct carbon fuel cell. The oxygen is provided through air which is preheated to operating 

temperature, bubbled through the molten electrolyte at the cathode. The air is usually introduced through 

a sparger to ensure formation of small bubbles. Moreover, to control the operating temperature a type-K 

thermocouple is also present in the electrolyte. Fuel cell and air is heated using ceramic fiber heaters and 

are insulated to prevent heat losses.  

 
Figure 5: Schematic of a direct carbon fuel cell configuration [16] 

2.3  Efficiency 

Thermodynamic efficiency, fuel utilization factor and the voltage efficiency are used to determine the stack 

efficiency of a fuel cell [33]. The total energy of the fuel that can be utilize to produce electricity is called it 

Gibbs free energy given by 

ΔG=ΔH−TΔS 

Where, 

ΔH is the enthalpy of the fuel 

oxidation reaction, ΔS is the entropy 

term, T is the temperature at which 

the reaction occurs. The open circuit 

voltage of the fuel cell is determined 

using the free energy (ΔG) that is 

available for conversion to electricity. 

Eocv =
ΔG

𝑛𝐹
 

Where, 

n is number of electrons transferred 

in the fuel cell, F is the Faraday 

constant. Badwal and Giddey 

showed in Fig. 6 that thermodynamic 

efficiency is a function of 

temperature.    

      Figure 6: Theoretical efficiency for different fuels [33] 

https://journals.aijr.in/index.php
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The free energy of a fuel decreases with an increase temperature due to entropy factor. For example fuel 

cell efficiency for hydrogen and CO are 83, and 91% at 25 °C while 69 and 61% respectively at 980°C on 

the basis of their high heating value (HHV) [24] . 

In direct carbon fuel cell, carbon rich solid fuel and products are in different phases (solid and gas). 

Therefore, the fuel can easily be separated and recycled in the process. Thus, almost all (100%) of the fuel 

can be utilization. However, for most of the fuel cells the fuel utilization averages to 80-85% [34].  

The stack efficiency of around 75-80% is predicted for direct carbon fuel cells when the system electrical 

efficiencies are in the range of 65-70% considering system losses[16], [24]. An increased efficiency of 80-

85% is predicted by employing heat recovery system [2]. However, at this change fuel processing and 

purifying techniques are not well studied which could lead to losses during coal processing, thus reducing 

overall efficiency of the system.  The efficiency of the system is almost twice the conventional power plants 

and higher than some other fuel cell types [16]. Thus about 50% reduction in greenhouse gas emissions is 

expected with this type of technique when compared with conventional coal fired power plants [33], [35]. 

2.4  Type of Direct Carbon Fuel Cell 

The direct carbon fuel cells are classified in main three classes on the basic of electrolyte used as described 

in Table 1. 

I. Molten salt (KOH, NaOH) – operating at 500-600o C. 

II. Molten carbonate (Li, Na, K) – operating at 750-800o C.  

III. Oxygen ion conducting ceramic (doped zirconia, ceria) – operating at 800 - 1000o C. 

a) Fluidised bed (direct contact of carbon particles with anode). 

b) Molten metal anode (carbon in contact with molten metal anode). 

c) Molten salt (carbon particles suspended in a slurry). 

 

A part from electrolytes, direct carbon fuel cells can further be subcategorized on the basis of material and 

design of anode and the method by which fuel is delivered to electrodes within the cell [33]. 

• Solid carbon – fluidised bed  

• Carbon mixed with a molten metal  

• Carbon mixed with a molten salt. 

Table 1: Main types of direct carbon fuel cells and fuel cell reactions [24]. 

Fuel / Anode Electrolyte Cathode T (oC) 

Solid graphite rod as fuel and anode 

C + 4OH- = 2H2O + CO2 + 4e- 

Molten Hydroxides 

OH- 

Air as oxidant 

O2 + 2H2O + 4e- = 4OH- 

~ 600 

Carbon particle as fuel in molten 

carbonate and anode 

C + 2CO-2
3 = 3CO2 + 4e- 

Molten Carbonates 

CO-2
3 

Air as oxidant 

O2 + 2CO2 + 4e- = 2CO-2
3 

~ 800 

Carbon particles in fluidized bed 

C + 2O-2 = CO2 + 4e- 

Oxygen ion 

conducting ceramic 

electrolyte 

O-2 

Air as oxidant 

O2 + 4e- = 2O-2 

800 to 950 

Fuel in contact with molten tin 

Sn + 2O-2 = SnO2 + 4e- 

Carbon particles as fuel in molten 

carbonate and anode 

C + 2O-2 = CO2 + 4e- 

 

Along with carbon fuel cells having solid electrolyte, there are direct carbon fuel cells in which carbon is 

oxidize internally or externally to produce carbon monoxide (CO). Although the reaction of carbon to 

produce carbon monoxide is not electrochemical and thus will not produce any voltage. However, the 

https://journals.aijr.in/index.php
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reaction of carbon monoxide to produce carbon dioxide will be electrochemical and produces voltage for 

the process. In this type of cell system, fuel is carbon monoxide instead of carbon. Such fuel cell can be 

referred as indirect carbon fuel cell. This type of system has an advantage, since carbon monoxide is produce 

externally therefore impurities if any, can be remove with disturbing the cell. Moreover, this type of system 

produces pure form of carbon dioxide which can be separated easily. However, utilization of carbon 

monoxide reduces the theoretical efficiency of the system [35]–[37]. The basic direct carbon fuel cell 

technologies are still under development. There is another but less studied type of direct fuel cell based on 

aqueous-alkaline electrolyte, which uses an aqueous hydroxide solution of potassium, lithium, sodium, 

cesium and magnesium and operates at temperature less than 250 0C [33]. However, the performance of 

such cell is not satisfactory. A tree diagram for different direct carbon fuel cells is described in Fig. 7 to 

clarify a number of technologies under development.  

 
Figure 7: A tree diagram of various DCFC technologies under development [24] 

2.4.1 Molten Salt Fuel Cell 

In this type of direct carbon fuel cell molten hydroxide like NaOH or KOH is used as an electrolyte. The 

electrolyte is kept in an metallic pot which also act as a cathode [37]. The anode makes up of graphite or 

coal derived carbon is submerged in the electrolyte act as fuel. So, this carbon rod act as fuel and anode at 

the same time. Oxygen is supplied at the cathode by bubbling the air from the bottom of molten 

electrolyte[38]. Typically this type of direct carbon fuel cell operates at temperature of 500 to 6000C [39], 

[40]. Electrochemical reactions include: 

At anode 

C + 4OH-
 → 2H2O + CO2 + 4e- 

At cathode: 

2H2O + O2 + 4e-→ 4OH- 

Although molten hydroxide have a number of advantages with the main being relatively lower operating 

temperature high ionic conductivity, higher electrochemical activity of carbon, but has a disadvantage of 

the formation of carbonates [39]. These carbonates are formed by the combination of carbon dioxide and 

carbon with hydroxide ions of electrolyte [33], [39]. 

2OH− + CO2 → CO3
2− + H2O 

C + 6OH− → CO3
2− + 3H2O + 4e− 

Direct carbon fuel cells with molten hydroxides electrolyte can be operated at low temperatures allowing 

the fabrication of cell with comparatively less expensive material, thus reducing the cost of cell. Moreover, 

https://journals.aijr.in/index.php
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according to Boudouard equilibrium the dominant product from carbon oxidation will be carbon dioxide. 

As indicated by Goret and Tremillon the rate of carbonate formation is dependent on the concentration of 

oxygen ions and water concentration. As a result with an increase in water content in the cell, CO3
2− will 

reduce considerably [41]. 

2.4.2 Molten Carbonate Fuel Cell 

The electrolyte in this type of cell is molten carbonate and fine particles of carbon are dispersed in the 

electrolyte that act as fuel. Carbonate ions CO3
-2 act as the carrier to carry charge [42], [43]. Because of high 

carbonate conductivity and good stability molten carbonates of potassium, lithium and sodium are used. 

The operating temperature for cell ranges from 750 to 800oC [44], [45]. The reactions in the cell are: 

At anode 

C + 2CO3
2- → 3CO2 + 4e- 

At cathode 

O2 + 2CO2 + 4e- → 2CO3
2- 

A eutectic mixture of lithium and potassium carbonates is present in the cell. Anode current collector is 

made up of nickel and at cathode current is collected by sintered frit of fine nickel particles. Electrodes are 

separated by zirconia felt [39] [46]. Corrosion of metal clad bipolar plates, high cathode polarisation losses 

and up-scaling are main disadvantages of this type of cell. Moreover, poor understanding of relationship 

between carbon structure and its electrochemical activity, lack of a suitable fuel delivery system and 

electrolyte tolerance to high percentages of contaminants are some other issues. A molten carbonate fuel 

cell having particulate anode was built at Ohio State University [47], [48]. Graphite, activated carbon, and 

coal particles were suspended in bath of (Li/Na/K)2 CO3 slurry. These particles performed like anode. The 

current was exchanged by a gold rod that was a current collector. This cell could be operated at different 

conditions.  With the increase over-potential, particle loading rate, temperature of cell, and rate of agitation 

the current density was found to increase [48]. 

In another study, rate of carbon monoxide formation was studied. It was found that carbon monoxide 

production rate for K2O-added carbon black is lower and it act as inhibitor of carbon gasification as shown 

in Fig. 8. Carbon monoxide formation rate for Li2CO3-added carbon black, and K2CO3-added carbon black 

was compared [49], [50]. The results show that K2CO3 is a slightly more effective catalyst than Li2CO3 as in 

Fig. 9. 

Figure 8: CO formation rate for potassium carbons [51] 
Figure 9: CO formation rate for K2CO3 / Li2CO3 

carbons [51] 

https://journals.aijr.in/index.php
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Chen et al. used different ternary mixtures of Li2CO3, K2CO3 and Al2O3 with different anode combinations 

in direct electrochemical oxidation with feedstocks mainly vapor-grown carbon fiber, carbon black, being 

flake graphite and green needle coke [52]. A mixture of carbon dioxide and air was introduced at cathode 

in a molar ratio of 3:5. Maximum power density with high current densities was achieved at temperature of 

650oC using Li2CO3, K2CO3 and Al2O3 in a mole ratio of 43.4%, 26.6% and 30% respectively. Researchers 

have also investigated the performance of direct carbon fuel cell which employed graphite and activated 

carbon derived from bamboo or oak-wood. To improve the activity of carbon fuel it is pretreated with 

K2CO3 and HNO3. Nitrogen was used as fluidizing gas. Nickel based current collector was used to transfer 

the charge as a result of anodic reaction. It was found that utilizing graphite produced limiting current 

density of 800 A/m2 for anodic over-potentials of 0.3 V [53].  

Molten Carbonate Fuel Cell are considered superior because of they offer high electric energy conversion 

and relatively low operating temperature [38], [42], [44], [54]. In a simple configuration cycle, MCFC have 

high conversion efficiencies (> 45%). This leads to considerably reduced fuel consumption along with low 

environmental impact (reduced CO2 emissions). These properties of MCFC makes it a fit for medium to 

large-scale power generation. MCFC has the steepest polarization curve (V–I characteristic) which is 

advantageous at low current density operation [44]. Moreover, MCFC operates at a lower temperature of 

around 600oC which omits the need of expensive metal catalysts [54]. This reduces the production cost of 

the cell that can be used for commercial purposes [55].  

2.4.3 Oxygen Ion Conducting Ceramic Fuel Cell 

Oxygen ion conducting ceramic is used as an electrolyte in this type of cell. Stabilized zirconia (8 - 10 mol 

% Y2O3, balance ZrO2) is the most common electrolyte used in direct carbon fuel cells. The cell typically 

operates at temperature of 800-1000oC [56]. . There are three subcategories that use oxygen-ion conducting 

solid electrolyte. They differ in the anode design and the mechanism of fuel delivery to the anode / 

electrolyte interface. 

2.4.3.1 Solid Carbon or Fluidized Bed as Fuel 

In this technology a direct electrochemical reaction occurs between the oxygen ions and carbon fuel at the 

anode. The oxygen ions are transported through ceramic electrolyte from cathode to the anode. The 

reaction is as follows: 

C + 2O2
- → CO2 + 4e- 

The carbon particles are in direct contact with the anode [29]. Most of the work on this type of cell is 

focused on button cells comprised of ceramic electrolyte disk with nickel based anode and lanthanum 

strontium manganate (LSM) based cathode [32]. Solid fuel delivery to anode / electrolyte interface, lack of 

understanding of carbon oxidation reaction mechanisms at the interface are main issues in addition with 

the technical issues associated with SOFC. 

2.4.3.2 Solid Carbon in Molten Metal as Fuel 

This type of technology employs a molten metal such as tin that act as carbon fuel carrier as well as used in 

anode. The reaction of tin with oxygen ions is given as follow: 

Sn (liq) + 2O-2 → SnO2 + 4e-  

The cell uses above reaction in the presence of oxygen at cathode have OCV of 0.78V. Thus, the tin oxide 

can be converted back to tin by a reaction with carbon fuel. The reaction would be exothermic. Electricity 

is produced by direct oxidation in a fuel cell that have molten tin as anode and carbon fuel. This type of 

cell operates at high temperature of 1000oC. In order to maintain the contact of molten tin with carbon fuel 

while avoiding formation of amalgam, porous ceramic separators are used. However, use of porous ceramic 

separator causes excessive anodic polarization losses [33]. 

https://journals.aijr.in/index.php
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2.4.3.3 Solid Carbon in Molten Carbonate 

In this technology molten carbonates containing carbon fuel act as anode and oxygen ion conducting 

ceramics as the electrolyte. Carbon fuel mixed with molten carbonates is supplied to anode. Various types 

of fuel like biomass, coal and tar can be used in this type of cell since it is a hybrid between molten carbonate 

and solid oxide fuel cells. The carbon is first oxidized inside the cell or externally to carbon monoxide as 

per following reaction: 

C + CO2 → 2CO 

This carbon monoxide reacts with the oxygen ions at the electrode to form carbon dioxide. In the cell, the 

carbon particles that come in contact with oxygen ions are converted to carbon dioxide while the other 

ones first form carbon monoxide which is further oxidize to carbon dioxide. 

3  Fuels for Direct Carbon Fuel Cell 

Direct carbon cell used solid carbon as fuel. The performance of cell is dependent on the structure and 

chemical characteristics of the solid carbon fuel. In case of coal, the properties and characteristics of fuel 

varies greatly depending upon the source of coal and pretreatment methods used. Direct carbon fuel cells 

can used wide variety of fuels including coal, liquid hydrocarbon fuels, biomass and organic waste [57]–

[59]. Some of these fuels are used directly with a little pretreatment while other require heavy pretreatment 

and purification to be used in direct carbon fuel cells [60]–[62]. Researcher believed that the performance 

of direct carbon fuel cell depends on the properties of fuel such as crystal structure (degree of 

graphitization), particle size and impurity, since the mechanism of carbon electrochemical oxidation is not 

fully understood. The oxidation mechanism varies with the type of direct carbon fuel cell. Chemical and 

physical properties of carbon vary with its allotropic form. Studies are conducted to understand the 

correlation between crystal structure and oxidation reaction mechanism. It was found that the oxygen 

reactivity in graphitic or partially graphitic carbons is highly anisotropic [63], [64]. Kintoshita et al. found 

that the rate of carbon oxidation is faster at crystal edges [65]. Moreover the rate of carbon oxidation is also 

affected by structural defects, dislocations, lattice vacancies and grain boundaries and as expected, highly 

disordered structures, such as amorphous carbon have much higher oxidation rates than highly ordered 

structures [63], [64].  For electrode characterization crystallite size and lattice spacing are considered as 

significant parameters. Studies of the 

reactivity of carbon showed that 

these factors also play significant role 

in direct carbon fuel cells. This has 

been shown by number of studies 

that correlate the crystal structure of 

carbon to its electrochemical 

reactivity. In general, structures with 

a greater degree of crystal disorder 

have higher electrochemical 

reactivity due to the greater 

availability of reaction sites. 

Crystallization index is factor on 

which the properties of fuel depends. 

Fig. 10 shows the crystallization 

index of different fuels.          Figure 10: Performance of different carbon fuels in DCFCs 

4 Characteristics of Direct Carbon Fuel Cell 

Direct carbon fuel has many properties or features that makes it different from rest of power generation 

technologies. It is an emerging technology that can be used for commercial power generation through 

rigorous research and development. Some of the important features of the cell is discussed in this review. 
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4.1  Reduced Environmental Impact 

The direct carbon fuel cell utilizes carbon as a fuel to produce energy by electrochemical conversion of 

carbon to CO2. This is an electrochemical reaction in which the only product of reaction is pure CO2 [24]. 

This pure gas can easily be separated and dumped without being released into the environment. No other 

pollutants like SOx and NOX are produced, since the cell allows only carbon to convert electrochemically.  

4.2  High Efficiency 

DCFCs have high conversion efficiencies when compared to other power generation technologies as shown 

in Fig. 11.  

 

 

Figure 11: Efficiency comparison of power generation technologies [66]. 

Carnot’s cycle limits the conversion of heat to useful work, but it does not affect the efficiency of DCFC 

as it is an electrochemical device. The operation of the cell is based on isothermal oxidation instead of 

combustion oxidation, therefore the maximum efficiency of the cell is calculated using Gibbs free energy. 

DCFC has higher efficiency because of lower number of energy transformations in the cell as compared to 

any combustion-based device [67]. This is because with each conversion (energy transformations) some of 

the energy is lost, resulting in overall reduction in system’s efficiency [68].  

4.3  Modularity 

DCFCs have outstanding modularity. The output power of any fuel cell system can be controlled by varying 

the number of cells-per-stack and/or stacks-per-system. The efficiency of a DCFC is not dependent on the 

size of system prove advantageous in large-scale fuel cell systems. Independence of efficiency of DCFC 

from its size has an advantage of using them in smaller fuel cell systems [69]. 

4.4  Fuel Flexibility 

DCFC can use a variety of carbonaceous fuels. It can used wide variety of fuels including coal, liquid 

hydrocarbon fuels, biomass and organic waste [57]–[59]. Some of these fuels are used directly with a little 

pretreatment while other require heavy pretreatment and purification to be used in direct carbon fuel cells 

[60]–[62]. Researcher believed that the performance of direct carbon fuel cell depends on the properties of 

fuel such as crystal structure (degree of graphitization), particle size and impurity, since the mechanism of 

carbon electrochemical oxidation is not fully understood. The oxidation mechanism varies with the type of 

direct carbon fuel cell. 
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4.5  Static Nature 

DCFC is inherently silent device due to its electrochemical nature. The fuel cell has limited dynamic parts 

that not only makes is silent, but also simplifies the manufacturing, design, assembly, operation, and analysis 

of the cell than that of heat engines. Such characteristic of the cell promotes its use in auxiliary power and 

distributed generation applications in addition to portable applications [70]. 

5 Applications 

Direct carbon fuel cells have potential to be used in broad range of applications. As a result of their high 

efficiency, static nature, modularity and fuel flexibility, they have applications ranging from vehicles to 

power plants. Due to its promising nature the use of fuel cells has been increased in different sectors as 

shown in Fig. 12 and 13.  

5.1  Portable Applications 

Portable applications mainly includes portable power generators and electronic devices [71], [72]. Portable 

power generators are designed for light outdoor personal uses such as camping and climbing, light 

commercial applications such as portable signage and surveillance, and power required for emergency relief 

efforts. In electronic devices such as laptops, cell phones, etc., fuel cells cab replace battery. The power of 

portable fuel cells typically ranges between 5 and 500 W [71]. 

5.2  Stationary Applications 

Residential, commercial, and industrial stationary power generation sectors can also employ DCFCs. 

Emergency back-up power supply (EPS) [73], remote-area power supply (RAPS) [74], [75], and distributed 

power generation (CHP) [76] are main stationary applications of DCFCs. Around 70% of the fuel cells are 

utilized in stationary applications [67]. 

 
Figure 12: Annual growth of the fuel cell industry between 2008 and 2012 by application [77]. 
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Figure 13: Annual growth of the fuel cell industry between 2008 and 2012 by fuel cell type [77]. 

5.3  Transportation Applications 

The growth of the transportation industry has also increased the global greenhouse gas emissions every 

year [78]. This concern has served as a ground for the development of clean energy technologies like fuel 

cells. Currently, 99% of the vehicles get their energy from combustion engines that is a source of greenhouse 

gases. Contrary, fuel cells offer the transportation industry near-zero harmful emissions without having to 

compromise the efficiency of the vehicle. Considering the advantages such as static operation, fuel 

flexibility, modularity, and low maintenance requirements; fuel cells become an ideal future alternative for 

current combustion engines.  

6 Advantages 

Direct carbon fuel cell has many unique features. It has significant thermodynamic advantages. Because of 

entropy change for the cell reaction the theoretical electrochemical conversion efficiency of direct carbon 

fuel cell slightly exceeds 100%. The chemical potentials of carbon dioxide and carbon fuel are fixed and 

independent of extent of conversion of the fuel, since both exist as pure substances in separate phases. This 

allows a full conversion of carbon fuel in single pass making the fuel efficiency of 100%. This makes direct 

carbon fuel cell the most efficient power generation technology. 

Second, different sources including coal, petroleum coke, biomass (rice hulls, corn husks, nut shells, grass, 

and woods) and even organic garbage can be used to produce solid carbon fuel. Coal is the most abundant 

fossil resource in the United States, Canada, the former Soviet Union and China. Moreover, utilization of 
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carbon in direct carbon fuel cell consumes less energy and less capital as compared to the production 

hydrogen-based fuels by steam reforming processes. Annually, in the United States billions of kilograms of 

carbon black are produced by pyrolysis in the United States. Moreover, carbon releases much more energy 

per unit volume with oxygen (20.0 kWh L−1) as compared to hydrogen (2.4 kWh L−1), methane (4.0 kWh 

L−1), gasoline (9.0 kWh L−1), and diesel (9.8 kWh L−1) 

Third, emissions from direct carbon fuel cell are lower as compared to coal-firing power plants. In direct 

carbon fuel cell carbon is converted to carbon dioxide through electrochemical reaction at anode without 

direct mixing with air. As a result, direct carbon fuel cells have 50% lower emissions with 10 times reduced 

off-gas volume compared to coal-burning power plants. Carbon dioxide is the main component of off-gas, 

which can be used to improve oil recovery or can be permanently stored beneath the earth’s surface. This 

reduces the release of carbon dioxide in air. Use of direct carbon fuel cell produce electricity by coal which 

is in abundant in some countries like China and Pakistan, which would reduce the carbon dioxide, sulfur 

dioxide and nitrogen oxide emissions. 

Fourth, absence of reformers and heat engines makes direct carbon fuel cells mechanically simple. It can 

be built near coal mine thus eliminating the need of coal transportation, saving cost and energy. 

7 Technology Status and Challenges  

Direct carbon fuel cell t requires extensive research and efforts before commercializing the technology, 

since it is in initial stage of development. Single cells or small stacks are mostly tested. Type of electrodes, 

method of fuel delivery within cell determines the power densities of the cell.  

Following are the main technical issues that restricts the commercialization of direct carbon fuel cells:  

a) Direct carbon fuel cells have usually low power densities. 

b) Cells are exposed to high degradation rates that causes corrosion of various cell components. 

c) Methods of fuel delivery to anode within the cell. 

d) Extending the technology for large scale energy generation. 

e) Production of fuel for cell utilizing low cost processing technologies. 

The above-mentioned factors greatly affect the up-scaling of direct carbon fuel cell technology. The solid 

fuel must be delivered to anode in such a way that there is maximum interaction of fuel with electrode at 

electrode and electrolyte interface. The performance of cell largely depends on the properties of fuel. 

Therefore, fuel processing is crucial in direct fuel cell technology. The electrochemical oxidation of carbon 

fuel inside fuel cell is complex phenomenon. Therefore, the technology is still in its initial stages of 

development and need time for up-scaling. 

8 Conclusion 

DCFC is an emerging power generation technology that utilizes carbon as a fuel to produce energy through 

electrochemical conversion of carbon to carbon dioxide. It is an electrochemical device that is static and 

highly efficient device that can use a variety of carbonaceous fuels. It finds its application in small electronic 

devices like laptops and radio to huge power plants. The high efficiency of DCFC makes it an ideal fit for 

power generation applications. DCFC can be classified into different types, where Molten carbon fuel cell 

is considered superior because of its comparative high efficiency and low operating temperature. Direct 

carbon fuel cell is a cleaner technology that might be an alternative to conventional thermal power plants. 

However, due some technical reasons it cannot completely replace the thermal power plants but due to 

high efficiency it has been a topic of great interest for researchers. The production of product in different 

phase as compared to fuel allows up to 100% fuel consumption (by fuel separation and recycling), thus 

optimizing the fuel consumption. Since, the performance of direct carbon fuel cell is associated with the 

properties of fuel, development in fuel processing technology with further help in up-scaling of this 

technology. 
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