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1 Introduction 

Solar dynamical processes are the primary drivers of space weather. They are the main source of any change in 

the solar atmosphere as well as in interplanetary space. The article Solar Dynamical Processes I [1] was focused 

on Sun and its properties in which we presented a brief overview of the solar magnetic field and developed an 

understanding of differential rotation in the Sun. The solar magnetic field is the governing factor for the 

dynamical processes taking place on the Sun. Unlike Earth’s uniform poloidal magnetic field, the magnetic field 

of the Sun is non-uniform. The Sun possesses poloidal as well as toroidal magnetic field, which together provide 

a very non-uniform magnetic field distribution over photosphere/heliosphere [1] – [12]. According to the 

standard model, different layers of the Sun rotate at different angular velocity. This property of Sun is called 

differential rotation. Differential rotation and non-uniform magnetic field altogether are the two major factors 
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responsible for dynamical processes such as sunspots, prominences, bright points, solar jets, coronal holes, 

solar flares, coronal mass ejections etc.   

We also discussed dynamical processes like sunspots, prominences, bright points, giving a preliminary 

introduction to their properties and the factors responsible for their formation and stability. Sunspots are the 

cool, dark and magnetically constrained regions found on the surface of the Sun [13], [14]. They are normally 

found in the pairs/groups and have been reported to move from higher latitude to equator over the course of 

solar cycle [13]. Solar prominences are the arch-like structure having a large amount of plasma. They are often 

found high into the chromosphere and are supported by the magnetic tension [14]. They are cooler than the 

photosphere and are seen as dark as ‘filament’ like structure when observed against the disk [14]. Bright points 

are the short-term bright spots found mostly in the active region where magnetic reconnection can easily take 

place. They often indicate the presence of a magnetic field in the region and are associated with other dynamical 

processes such as solar jets, solar flares etc. [16].  In the present article, we will emphasize on other dynamical 

processes e.g., coronal holes, solar jets, solar flares and coronal mass ejections (CMEs).  

2 Coronal holes 

Coronal holes are large dynamic structures found at the polar caps and low latitude on the Sun (see figure 1). 

They are often identified as dark and cool structures having large scale open-magnetic field, very low density 

and temperature [17] – [19]. “Coronal holes are defined as dark regions on the space images of the Sun in UV 

spectral lines or in X-ray continuum images or (as bright regions) from the ground-based observations in the 

IR He I line 10830 Å” [20].  

Observations and analysis of data suggested that coronal holes rotate like a rigid body [21], [22]. Based on a 

current-free model of the coronal magnetic field, in 1988, Nash et al. [23] suggested that magnetic reconnection 

can be helpful in understanding the rotation of coronal hole. In their model, they found that field-line 

reconnection can lead to quasi-rigid rotation of coronal holes and concluded that strong axisymmetric field 

components can support prolonged meridional coronal hole rotations during the period of decreasing solar 

activities. Wang and Sheeley [24] studied the 

interchange reconnection between open 

and closed magnetic flux at coronal hole 

boundaries. They suggested that the 

interchange reconnection oppose the 

shearing of magnetic flux and lead to quasi-

rigid rotation of coronal holes. 

Coronal holes largely depend on the solar 

cycle, i.e., during solar maxima, there are 

almost no polar coronal holes, while during 

solar minima they are much more 

prominent [25], [26]. An observational study 

of coronal holes during the solar cycle 

revealed that the temperature of coronal 

hole varies over the solar cycle with typical 

values of 1.17 ± 0.06 MK and 1.09 ± 0.02 

MK during solar maximum and minimum, 

respectively [26]. This study also revealed 

the displacement of coronal holes shortly 

after its establishment at the poles, suggesting Figure 1: X-corona, image taken SXT-Yohkoh, Opted form 

Cranmer 2009 [17] 

https://journals.aijr.in/index.php
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that the interaction between mid-latitude coronal holes of different polarities may lead to displacement. Based 

on the Skylab magnetogram analysis the magnetic field strength of low latitude coronal holes has been measured 

and found to vary between 7.2 G to 0.46 G [27]. However, Harvey and Sheeley [28], based on the observation 

of low-latitude hole of average magnetic field strength of 15 G, suggested that upper average magnetic field 

strength should be double of that suggested by Bohlin and Sheeley [27].  

There exist many models and hypotheses proposed for the formation of coronal holes. In coronal models, 

coronal holes are usually defined as “the footpoints of the magnetic field open into the heliosphere” [29], [30]. 

In 1974, W.M. Glencross [31] suggested that coronal holes are formed when two or more flux tubes of opposite 

polarities merge together to form a cavity in the magnetic field. The author also suggested that time scale of 

this process is approximately 24 hours. Later in 1975, Timothy et al., [22] suggested that coronal holes are 

formed by continuous emergence and dispersion of active region magnetic field. This process gives rise to 

large-scale unipolar magnetic field and occurs over a time scale of few solar rotations. They further suggested 

that the divergent configuration of coronal hole is obtained by the opposite polarity magnetic field surrounding 

the unipolar magnetic features. This hypothesis of Timothy et al. [22] was later confirmed by Bohlin and Sheeley 

[27], Harvey and Sheeley [28] and the citations therein.  

Bohlin and Sheeley [27] gave the unbalanced flux model for equatorial holes and suggested that the coronal 

holes are formed when the unbalanced flux/ bipolar magnetic regions (BMR) come closer to form a balanced 

flux region. In their model, the application of unbalanced flux to other solar cycle phenomena like the 

movement of sunspots, polarity reversal in sunspots during new cycles, rapid activities during solar maxima 

etc., could predict the coronal holes throughout the solar cycle. A review by Harvey and Sheeley [28] suggested 

that the distribution of large-scale photospheric magnetic flux is the key factor in determining the structure and 

evolution of coronal holes. Their analysis of magnetic field revealed that a large number of fragmented fine-

structure elements organize to form a large-scale structure in the photosphere with a large area and dominated 

unipolar magnetic field over the period of one day. In 1996, Wang et al., [32] suggested that magnetic 

reconnection could take place near coronal boundaries. Kriesta et al. [33] also studied the interaction of open 

and closed magnetic field at the coronal hole boundaries and their effect on small-scale changes. They 

determined the velocity of coronal hole displacement to be ≤ 2 km/s which was in compliance with the 

magnetic reconnection rates of the order ≤ 2 × 10−3 at the coronal holes boundary.  

While observing the coronal holes at various wavelengths e.g., microwave, optical and EUV, Gopalswamy et 

al., [25] found that radio brightness enhancement was greater in equatorial and polar coronal holes than the 

quiet Sun and these radio brightness enhancements were associated with the unipolar open magnetic field in 

the coronal holes. Further, they concluded that high-temperature region (of the order 104 K) in the upper 

chromosphere is the source of enhanced radio emissions. Norton et al., [34] studied the SOHO/EIT data of 

low and mid latitude coronal holes. They found that a symbiotic relationship between the coronal holes and 

the active region. They suggested the coronal hole emerges from the unipolar field surrounded by the bipolar 

field in the active region. Yang et al., [35] studied the formation data of an equatorial coronal hole obtained 

from GOES-12/SXI, SOHO/EIT and SOHO/MDI. They found that the coronal hole was formed gradually 

over the period of 81 hours followed by decrease in the magnetic flux, temperature, SXR and EUV brightness. 

They noticed that during this process these quantities were approximately unchanged in the quiet region of the 

Sun. They suggested that the decrease in the magnetic flux can be due to the magnetic reconnection between 

the open and closed magnetic field in the region which can be marked as the origin of the coronal hole. The 

coronal holes have been identified as a source of high-speed solar wind [36], [37]. These solar winds carry 

energetic particles into the interplanetary space and play a fundamental role in governing space weather.  

Raju et al., [38] studied the physical conditions of coronal holes and the nearby regions by exploiting the 

SOHO/EIT and Norikura Solar Observatory data. They found that the nonthermal velocity in the coronal 

https://journals.aijr.in/index.php
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holes was greater than that of the quiet region and suggested that the enhanced nonthermal velocity may have 

significant implications in the acceleration of high-speed solar winds. Subramanian et al., [39] studied the small-

scale evolution of coronal hole boundaries and found that the coronal hole boundaries are dominated by a large 

number of brightening events. They suggested that magnetic reconnection between open and closed magnetic 

field lines are responsible for the outflow of plasma at larger distances. They further suggested that these 

outflows might act as one of the sources of the solar winds. In 2011, G. De Toma [29] analyzed the coronal 

holes during the solar minimum between the solar cycle 23 and 24. The author found that most of the coronal 

holes present at low latitudes were a good source of high-speed solar wind streams. Karachik et al. [40] studied 

the correlation between the solar wind speed and coronal holes parameters and found a strong correlation 

between the solar wind speed and the area of coronal holes. They found that the number of coronal bright 

points and magnetic bipoles were gradually increased towards the center. They suggested that the contribution 

of near-equatorial parts of the coronal hole was very significant in driving high-speed solar wind. However, 

they further concluded that magnetic reconnection events, which are associated with coronal bright points, 

couldn’t act as the main driver of the fast solar wind.  

It is found that MHD waves play important role in coronal holes. Recently, Banerjee and Prasad [41] presented 

a short review of the observations of MHD waves in coronal holes. In the review, they stated that there are 

two main types of MHD waves, which dominate the coronal holes, compressive MHD waves and 

incompressive MHD waves. Compressive waves are the perturbations which further leads to density 

fluctuations while incompressive waves do not cause fluctuations in the intensity rather they cause fluctuations 

in other spectral data and can be identified through spectroscopic observations [41]. At the bottom of the 

coronal hole, Alfven waves can be formed in the small-scale magnetic field and give rise to the heating of 

coronal holes [42]. Coronal holes cannot be distinguished from the non-hole region very easily and temperature 

higher than 105 K is required for the better distinguishable observations [17].  However, with better 

observational techniques, it is possible to identify coronal holes quantitively as well as qualitatively. It has been 

seen that the wavelength of observation is also important to observe and distinguish coronal holes from 

chromosphere [17], [20], [25]. Coronal holes have been observed to be one of the major sites of magnetic 

reconnection. This gives rise to other solar activities such as bright points, solar jets etc. [39], [40], [43], [44]. 

Gopalswamy et al., [45] studied the interaction of coronal mass ejection (CME) with coronal holes. Their study 

was based on the parameters such as area and average magnetic field of coronal holes and their distance from 

the origin of CMEs. They found that coronal holes could deflect the CMEs away from the normal Sun-Earth 

line. They also found that coronal hoes mostly influenced the CMEs with driverless shock while for the shocks 

with drivers, there was no significant effect of nearby coronal holes on CME. Their result was further supported 

by the findings of Mohamed et al., [46] and Makela et al. [47]. Wood et al., 2012 studied the STEREO data of 

shock driven by CMEs and found that they were deflected by the coronal holes. This result was consistent with 

the one reported by Gopalswamy et al., [45]. The study of CMEs and their forecast is very important, as they 

are one of the major drivers of geomagnetic storms on Earth. The correlation of coronal holes with CMEs and 

solar winds makes the study of coronal holes very important, as coronal holes are a source of the movement of 

charged matter and magnetic flux into the interplanetary space.  

3 Solar Jets 

Solar jets are very common in the heliosphere. They are characterized by the sudden high-speed collimated 

outflow of matter, magnetic flux and magnetic energy often accompanied with high temperature (up to the 

order of 104 to 106 K).  They are found all over the heliosphere and their physical properties vary according to 

their location/region on the Sun. There are many types of jet observed in the heliosphere depending upon their 

https://journals.aijr.in/index.php
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location, properties and wavelength of observation like solar spicules, surges, polar jets (found in polar region), 

EUV jets (when observed in EUV wavelength), X-Ray jets (when observed using X-ray wavelength), etc.  

Wang et al [48] studied the polar jets in detail using the white light data of LASCO/SOHO. They found most 

white light/EUV jets near the bright points indicating close relationship of jets with the interaction of magnetic 

field. They suggested that EUV jets were the manifestation of magnetic reconnection between the unipolar 

magnetic concentration and small bipolar magnetic field. They found that the number of jets exceeded 3-4 per 

day, having outward propagation speed ranging from 400 to 1100 km/s with centroidal velocity ranging from 

140 to 360 km/s. They also found that most of the jets erupt in the heliosphere with velocity less than that of 

escape velocity with an average outward speed of approximately 250 km/s. They further suggested that the 

study of jets could be helpful in characterizing the properties of polar winds. Shibata et al., [49] analyzed the 

Yohkoh-SXT data and noticed the existence of X-ray jets in the solar corona. They found that the coronal X-

ray jets were mostly associated with X-ray bright points, emerging flux and active regions and had physical 

parameters such as translational velocity, size and kinetic energy in the ranges 3-300 km/s, 5×103 - 4×105 km 

and 1025 – 1028 erg respectively. They suggested three possible origins of X-ray jets: jets by evaporation flow; 

magnetic twist; and reconnection with mixed hot and cold plasmas, in which required energy is mainly provided 

by the magnetic reconnection.  

X-ray jets have been extensively studied using Yohkoh-SXT data [50] – [54]. Shimojo et al. [51] performed a 

statistical study of 100 X-ray jets images obtained by Yohkoh-SXT and found that most of the X-ray jets occur 

near active region and small flare sites. They estimated the length and width in the range 104 - 5×105 km and 

5×103 – 105 km with apparent velocity in the range 10 – 1000 km/s (average 200 km/s). They also found the 

occurrence rate of X-ray jets to be approximately 20 per month with a lifetime in the range 100 s to 16000 s. 

Studied have reported that the density and temperature vary in the range 0.7- 4×109 cm-3 (average: 1 × 109cm-

3) and 3 – 8 MK (average: 5.6 MK) respectively with thermal energy in the range 1027 – 1029 ergs [52] – [54]. 

Savcheva et al, [55] analyzed the Hinode/XRT data of the polar jets within the polar coronal holes. They found 

that the frequency of solar X-ray jet occurrence to be on average 60 per day with the majority of jets occurring 

inside the coronal hole. They carried out a statistical study of the physical properties of the polar jets such as 

height, collimated width, velocity and lifetime and found average values of 50000 km, 8000 km, 160 km/s and 

10 min, respectively. They also investigated the transverse velocity of the jets and defined it as “the velocity of 

the translation motion of the jet in the direction perpendicular to its elongation” and measured the transverse 

velocity in the range from 0 to 35 km/s. An analysis of SECCHI/EUV data of EUV coronal jets near-equatorial 

region by Nistico et al., [56], [57] revealed that the lifetime of EUV jet is typically between 20-40 min with 

velocity in the range 270 to 400 km/s. These observations have been summarized in Table-1. 

Table 1: Jet properties as observed in different instruments. Numbers in parenthesis are the average values. Opted 

from Torok et al. [58], Parachiv et al. [59], Savcheva et al., [55] 

Jet Property SXT [51], [52], [54] XRT [55], [59], [60]  EUVI [56], [57] 

Source Region Active Region Polar coronal hole  Polar/Equatorial coronal hole 

Occurrence  ̴ 20/month ̴ 60/day                  - - -  

Duration (min) 2 – 600   (10) 20 – 40  

Velocity (km/s) 10 – 1000 (200) 70 – 400 (160) 270 – 400  

Length (Mm) 30 – 400 (150) 10 – 120 (50) 100  

Width (Mm) 5 – 100 (70) 6 – 10 (8) 25  

Density (108 cm-3) 7 – 40 (17) 1.5 ± 0.1                    - - - 

Temperature (MK) 3 – 8 (5.6) 1.8 ± 0.2                    - - - 

https://journals.aijr.in/index.php
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Cirtain et al., [60] exploited the Hinode/XRT data of polar coronal holes for analyzing the X-ray jets in the 

nearby regions. They reported that on an average 10 X-ray jet events were observed per hour having two 

velocity components of the order of Alfven speed (~800 km/s) and sound speed (~200 km/s), respectively. 

However, their lifetime was found to be in range from 100 to 1500 s. They suggested that the high velocity of 

X-ray jets was achieved by the magnetic reconnection and these sites can be a source of Alfven waves. 

It is believed that coronal jets are formed by the interaction of the magnetic field between open (unipolar) and 

closed (bipolar) magnetic fields in the solar corona [58], [61]. Yokoyama and Shibata [62]–[64] carried out a 

two-dimensional MHD simulation of magnetic reconnection between emerging magnetic flux and the overlying 

coronal field. They suggested that different coronal magnetic field orientation (horizontal or oblique) give rise 

to different type of jets (horizontal or oblique) (see figure 2). In the study, they found that the cool plasma is 

carried upward by the emerging flux and accelerated by magnetic tension that give rise to cool jets. Emphasizing 

the importance of location of reconnection, they further suggested that nearer the reconnection to the 

photosphere, more the energy is released giving rise to hotter jet. However, if the reconnection takes place in 

the chromosphere, then it is more likely to produce cool jet. They further proposed the association of solar jets 

with small or micro-flares. Interaction of emerging flux and pre-existing magnetic flux has been widely studied 

[65]– [68]. 

Figure 2: Schematic topology of (a) simulation with horizontal jets, (b) simulation with oblique jet, and (c) flare 

model, Opted from Yokoyama and Shibata 1996, [63] 

Gontikakis et al., [69], 

[70] performed three-

dimensional MHD 

simulation of flux 

emergence and its 

reconnection with pre-

existing magnetic flux. 

Figure 3 shows the 

magnetic geometry of the 

simulation in which the 

preexisting magnetic field 

in the active region 

(marked as 1 in figure 3) 

undergoes 
Figure 3: Magnetic geometry of the simulation, opted form Gontikikas et al. 2010, [70] 

https://journals.aijr.in/index.php
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reconnection with the emerging field (marked as 2 in figure 3). Following the reconnection processes, 

reconnection current sheet is formed (marked as 3 in figure 3) followed by small reconnection loop (marked as 

4 in figure 3) and upper domain of jet (marked as 5 in figure 3). They found that the reconnection site give rise 

to high velocity upflow (jet) which followed the active region loop and subsequently falling into the solar 

surface, (see figure 3: jet plasma follows the magnetic field lines in above pre-existing field (above region 1 in 

domain 5) and subsequently falls in the solar surface). They compared it with the observations of active region 

jet obtained from TRACE, SUMER and MDI magnetogram and concluded that the jets are produced by 

reconnection processes on the appearance of emerging flux.  

Pariat et al., [71] proposed a model for generation of polar coronal jets by performing the three-dimensional 

simulation in which axis-symmetric null point topology cannot undergo magnetic reconnection. They found 

that the kink instability could cause magnetic reconnection between twisted closed and untwisted open 

magnetic field leading to impulsive release in energy, which can help in the generation of solar jets.   

Moore et al., [72] analyzed the Hinode/XRT coronal jets and found different kind of “blowout jets” than the 

“standard X-ray jets”. They suggested that blowout jets are formed by the ejective eruption of the base arch 

when the adequately large twisted magnetic flux tubes erupt to form jet due to reconnection and eruption. Pillet 

et al. [73] exploited the Hinode Spectropolarimeter data and analyzed quiet Sun jets. They found that jets were 

often located on the outer boundary of the granules and concluded that jets are formed by the interaction of 

horizontal field lines with the emerging field at the granular scale.   

Recently, Pariat et al. [74] examined the impact of plasma β on the solar jet by performing three – dimensional 

MHD model. They found that plasma β plays an important role in determining the morphology of the jet. They 

suggested that reconnection process in twisted magnetic field opens up the magnetic field lines. These open 

field lines release the twist present at the footpoints by the generation of propagating torsional Alfven waves 

which heat, compresses and accelerates the plasma during their propagation and thus giving rise to helical jet 

structures. Solar jets have been observed to be associated with many other dynamical processes [75], 76]. Opher 

et al., [77] studied the MHD instabilities and magnetic reconnection in the solar jets by performing MHD 

simulations and demonstrated that jets in the heliosphere are turbulent and can interact with the solar wind. 

Recent studies have reported that filament eruption at a smaller scale can also give rise to a jet [78], [79].  

Recently, Wyper et. al. [79] studied the three – dimensional MDH simulation for mini – filament eruptions 

using the magnetic breakout model given by Antiochos et al., [80]. In their model, magnetic reconnection 

releases energy stored in filament channel which eventually erupts to form a blowout jet.  

4 Coronal Mass Ejection 

Coronal mass ejections (CMEs) are one of the most 

important solar dynamical processes, which vastly affect 

the space weather and were discovered in 1971 [81]. 

During a CME, a large amount of magnetic flux (̴ 1023 

Mx) and mass (̴ 1016 g) is released into the interplanetary 

space with total energy exceeding 1032 ergs [82] – [86]. 

This rapid release is often identified by 3-part structure 

of CME, see Figure 4: (i) outer bright limb; (ii) cavity and 

(iii) the bright core [87].  

Many models have been proposed on the origin of CMEs 

and their impact on the dynamics of the Sun and 

interplanetary phenomena. Van Tend and Kuperus [89] 

Figure 4: CME with its 3-parts structure, opted from Kilpua et al [88] 

https://journals.aijr.in/index.php
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proposed a catastrophe mechanism in which the loss of equilibrium due to exceeding current may trigger a 

CME. Forbes and Isenberg et. al., [90] studied the catastrophe mechanism given by VanTend and Kuperus [89] 

and suggested that the equilibrium is lost due to magnetic reconnection which increases the current and hence 

creating imbalance between magnetic tension and compression. This leads to the eruption of the filament that 

can further lead to a CME. Antiochos et al. [80] proposed a magnetic breakout model for the onset of coronal 

mass ejections. They performed a 2.5-dimensional simulation of their model consisting of multipolar topologies 

where the CME onsets. In their model, reconnection occurs in the shear arcade and neighbouring flux systems, 

which disrupts the equilibrium and triggers the CME.  Karpen et al. [91] extended the magnetic breakout model 

[80] to perform a 2.5-dimensional simulation of breakout CME with high spatial resolution and concluded that 

the fast breakout reconnection onset CME while the fast acceleration of CME further onset the fast flare 

reconnection.  

CME travels away from the Sun at very high speed and their speed depends on many factors e.g., the location 

of occurrence, energy, coronal drag etc. CME triggered towards the interplanetary system is called interplanetary 

CME or ICME. ICMEs faces aerodynamic drag from solar wind, and based on their speed, they face 

acceleration/deceleration from the solar wind [92] – [94]. CMEs are closely related to other dynamical processes 

on Sun such as solar jets, solar flares and prominence. It has been reported that the eruption of prominence 

often leads to a CME [95].  Liu et al. [96] observed and analyzed the data obtained from SDO, SOHO and 

STEREO and suggested that solar jet event can trigger a high – speed CME. Their observation was consistent 

with the three – dimensional model of solar jets proposed by Pariat et al. [71]. Makela et al. [97] studied the 

relationship between solar energetic particles and highly energetic CMEs produce heavy – ion event and have 

higher velocities. Gopalswamy et al., [85] suggested that the high energy CMEs are associated with reservoirs 

of a large amount of magnetic energy like sunspots.   

In a much similar way as for other dynamical processes, magnetic reconnection plays a very important role in 

CME eruptions. Magnetic energy released is large enough to empower CMEs with large kinetic energy, with 

which it affects interplanetary space and space weather. CMEs may possess very high velocities, which can 

further accelerate or decelerate the solar wind. They also enrich solar winds with high-energy particles, which 

interact with Earth’s magnetic field and gives rise to phenomenon like Aurora. When a large amount of energy 

is released during CME, they can give rise to geomagnetic storms. These geomagnetic storms can disrupt both 

grounds based as well as spaceborne instruments.   

5 Solar Flare 

Solar flares, the energetic events, are often 

identified by intense brightness due to a sudden 

burst of magnetic flux and solar mass into the 

solar corona (see figure 5). It is one of the most 

widely read solar phenomena, with its studies 

going back to the Carrington event in 1859. 

Solar flares can occur anywhere on the Sun and 

have been associated to other dynamical 

processes such as CME, prominence eruption 

and bright points, for e.g., it has been reported 

in many studies that CME eruption can trigger a 

flare [98] – [101] 

Figure 5: Observed solar flare on April 21, 2002. Opted from Benz [98] 

https://journals.aijr.in/index.php
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It is now well established that magnetic reconnection or emergence can onset a flare. Researchers have 

suggested various models on the triggering mechanism of solar flares. Notably, the CSHKP model [102] – [105] 

consists of a large loop with fixed foot points, and the expansion of the magnetic loop triggers magnetic 

reconnection, which can erupt the loop giving rise to flare. Recently, Seaton et. al. [106] observed the current 

sheet structure of solar flare and the associated CME observations from SDO/AIA. In the CSHKP model, the 

formation of the current sheet is important for magnetic reconnection and eruption of flare. It is well 

established that CMEs and flares are very closely related to each other [98] – [101]. Gopalswamy et. al. [107], 

studied large flares which were not associated with CMEs and found intense microwave burst associated with 

the flares and suggested the production of non – thermal electrons.  

Heyvaerts et al., [108] proposed an emerging flux model in which a flare event was a result of a continuous 

process divided into three phases: pre-fare heating, impulsive phase and main phase (see Figure 6). In the pre-

flare phase, reconnection between the emerging flux and overlying magnetic field results in the formation of 

current sheets. Plasma starts heating up in the formed current sheet and rising emerging flux starts having 

plasma microinstabilities. In the impulsive phase, the acceleration of particles takes place along the magnetic 

field lines and thus reaching a critical current density in the current sheet which onsets a flare followed by the 

steady reconnection in the main phase.  

Figure 6: Schematic diagram of (a) preflare phase, (b) Impulsive phase, and (c) Main phase, 

opted from Heyvearts et. al 1977, [108] 

During a flare large amount of matter is released into the interplanetary space and emanate waves varying over 

the spectral range [109], [110] (see Table 2).   

Table 2: Sources of waves in impulsive flares, Opted from Mishra and Kumar 2017 [82] and citations therein. 

  Waves Produced Sources 

Microwaves Gyrosynchrotron emission from spiralling of electron 

Hard X-Ray and Gamma Ray Bremsstrahlung from sub-relativistic and relativistic electron 

Radio wave low frequency Plasma radiation 

Soft X-Ray Thermal bremsstrahlung 

Visible and Extreme Ultraviolet 

Radiation 

Hot thermal plasma 

Gamma Ray lines Interaction of MeV ions with ambient nuclei 

Gamma Ray continuum Decay of pions 
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Solar flares are associated with many other dynamical processes. As already discussed, almost all CMEs are 

followed by soft X-ray jets [107]. Prominence eruption also triggers flares and CMEs. Study of X-ray jets has 

revealed the association of flares with microflares and plays important role in triggering a solar flare.  

Magnetic reconnection provided most of the energy required for the eruption of flare. The magnetic energy 

released have very significant consequences as a large amount of magnetic flux and plasma is released into the 

interplanetary space. The energy released greatly contributes to the acceleration of solar energetic particles and 

solar winds which in turn affect space weather and may give rise to geomagnetic storms.  

6 Conclusion 

In this article, we discussed the dynamical processes with an emphasis on coronal holes, solar jets, solar flares, 

coronal mass ejections (CMEs) and their physical properties. We also discussed various models and their 

association with other dynamical processes. The article shed light on how the reconnection between closed and 

open field may lead to the formation of coronal holes. These holes have large open magnetic field spreading 

high into the heliosphere and have been reported to have the rotation. Magnetic reconnection at the boundary 

of coronal holes serves as the site of many other dynamical processes such as bright points and solar jets. 

Coronal holes have a close association with the solar wind. Advances in technology, observational techniques 

and instruments have enhanced our understanding of dynamical processes like solar jets, flares and CMEs. 

Solar jets are the long – collimated ejection of matter and have been reported to have the temperature of the 

order of 106 K. The article also encounters the role of magnetic reconnection and emerging magnetic flux in 

the formation of solar jets and its relationship with micro-flares. Mostly, Coronal Mass Ejections (CMEs) and 

flares are found to be very closely associated phenomena. It is very well established that flares often follow 

CMEs. In this article, we emphasized the relationship between the CMEs and flares with other dynamical 

processes. CMEs and flares follow most prominence eruption. Recently, it has been reported that jets can also 

trigger a CME. 
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