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1 Introduction 

Lorentz symmetry is a staple characteristic of modern physics, but recent developments in theory predict 

the possibility of violations in local Lorentz invariance (LLI).  The Standard-Model Extension, for example, 

allows for the breaking of Lorentz and charge-parity-time reversal (CPT) symmetries. This prompts the 

urgency of experimental measurements of predicted Lorentz violation effects. A recent experiment [1] using 

Ca+ ions has set an upper limit for Lorentz-violation in electrons at the level of one part in 1018. However, 

the experiment suffered the limiting factors of short decay lifetimes of its target states and a limited effect 

of Lorentz invariance. Both of these limitations can be improved by choosing a long lasting state in 

Ytterbium ions that exhibits enhanced asymmetry effects, specifically the 4f136s2 2F7/2 state, which is stable 

with a lifetime of order 10 years and has a negative reduced matrix element 〈𝐽|𝑇2|𝐽〉 [2].  Though performing 
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the experiment with Yb+ ions has been proposed theoretically [2] there are still considerable issues to 

address, especially with regards to how to actually implement the experiment. This paper lays out a scheme 

for executing the experiment both in terms of experimental approach and hardware configuration. 

2 Experiment Scheme 

The experiment is an analogue of the Michelson-Morley experiment, which originally probed for the 

existence of an aether using an interferometer. In our iteration, however, Michaelson interferometry is 

replaced with atomic interferometry and the existence of an aether is replaced by the existence of a preferred 

reference frame. Two atoms are trapped in a linear Paul trap and a uniform magnetic field is applied in 

laboratory ẑ. The ions are placed into a decoherence free subspace of two entangled states.  The system 

then oscillates in time on the Bloch sphere with a frequency corresponding to the energy difference between 

the states.  As the magnetic field and ion system rotate with respect to the sun's rest frame, LLI breaking 

will cause an oscillation in this energy, and thus the frequency of the Bloch sphere oscillation will itself 

oscillate in time.  By taking a series of measurements of identically prepared entangled states, varying the 

time the system is allowed to oscillate, and repeating, we can find the period of oscillation, which 

corresponds to the energy difference between the two entangled states. If the LLI breaking matrix elements 

are nonzero, we should observe variations in this frequency throughout the day.  Each individual 

measurement must then be made quickly enough to be short compared to the daily cycle of laboratory 

frame rotation. 

2.1 LLI Asymmetry Effects 

Because the induced magnetic field of the experiment is perpendicular to the surface of the earth, the field 

is then mostly perpendicular to the tangential of the lab frame rotation (with only an angular difference of 

the laboratory's offset from the rotational equator).  This gives us interferometric effect we are looking for. 

We are looking for LLI breaking asymmetries in the form of perturbations to the Hamiltonian, resulting in 

a shift in the energy difference between atomic states. This energy shift is given by [1] 

𝛥𝐸𝐿𝐿𝐼 = 𝓠 ⋅ 𝐶0
(2)(𝑡)        ( 1 ) 

where 𝓠 =
1

ℎ
(Δ𝐸0),     Δ𝐸0 is the energy difference between the states used in the experiment, and  

𝐶0
(2)
= −3𝑠𝑖𝑛(2𝜒) 𝑐𝑋𝑍 𝑐𝑜𝑠(𝜔𝐸𝑡) − 3 𝑠𝑖𝑛(2𝜒) 𝑐𝑌𝑍 𝑠𝑖𝑛(𝜔𝐸𝑡) −

3

2
(𝑐𝑋𝑋 − 𝑐𝑌𝑌) 𝑠𝑖𝑛

2(𝜒) 𝑐𝑜𝑠(2𝜔𝐸𝑡) −

3𝑐𝑋𝑌 𝑠𝑖𝑛
2(𝜒) 𝑠𝑖𝑛⁡(2𝜔𝐸𝑡)       ( 2 ) 

Here, 𝜔𝐸 is the earth's angular velocity = 2𝜋(23.93) hours, and 𝜒 is the colatitude of the laboratory. In 

Bloomington, Indiana (home of the Richerme laboratory), the colatitude 𝜒 = 50.83∘. 

The 𝑐𝑖𝑗 coefficients in Eq. (2) represent matrix elements in the electron sector which can be directly mapped 

to the photon sector by [1] 

                                             

{
 
 

 
 𝑐𝑋𝑌 =

1

2
𝜅̃𝑒−
𝑋𝑌

𝑐𝑋𝑍 =
1

2
𝜅̃𝑒−
𝑋𝑍

𝑐𝑌𝑍 =
1

2
𝜅̃𝑒−
𝑌𝑍

𝑐𝑋𝑋 − 𝑐𝑌𝑌 =
1

2
(𝜅̃𝑒−
𝑋𝑋 − 𝜅̃𝑒−

𝑌𝑌)

       ( 3 ) 

where 𝜅̃ are parameters of the Standard-Model Extension (SME) Lagrangian shift for electromagnetic fields 

[1] 

𝛿ℒ =
1

2
[𝐸⃗ ⋅ 𝜅̃𝑒− ⋅ 𝐸⃗ − 𝐵⃗ ⋅ 𝜅̃𝑒− ⋅ 𝐵⃗ ]      ( 4 ) 

If we can measure the energy shift throughout the day as given by Eq. (1) and bound the coefficients in 

𝐶0
(2)

, then we can bound the Standard Model Extension’s LLI-violating Lagrangian perturbation given by 

Eq. (4) with the mapping from Eq. (3). 
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2.2 Creation of a Decoherence Free Subspace 

Fig. (1) shows the relevant energy level diagram for 171Yb+. For this experiment, we will be working with 

states in the 4f136s2 2F7/2 level (labeled (𝐹 = 3)2𝐹7/2 ). 

 

Figure 1: Energy level diagram for 171Yb+ 

The level is split in the presence of the applied magnetic field according to the total angular momentum. 

While [2] works with eigenstates of 𝑚𝑗 (which are equivalent to 𝑚𝑓 for even isotopes of Yb), this does not 

take into account the nuclear spin 𝐼 =
1

2
 created by the extra neutron in 171Yb+. Instead we work with the 

𝐽 + 𝐼 coupled basis 𝐹 and label our states by the secondary total angular momentum quantum number 

{
|±1⟩ = | 𝐹⁡

2
7/2;𝑚𝑓 = ±1⁡⟩

|±3⟩ = | 𝐹⁡
2
7/2;𝑚𝑓 = ±3⁡⟩

 

(We are not concerned with Fermi/Bose statistics of integer-momentum states because we are dealing with 

non-fundamental particles that are physically separated enough as not to be subject to exchange statistics).  

We start out by placing our ions into a set of antisymmetric states with one ion in a superposition of 𝑚𝑓 =

⁡+1,+3 and the other in the superposition 𝑚𝑓 =⁡−1,−3. To distinguish which ion is assigned the positive 

or negative superposition, we name the states |Ψ𝐿⟩ and |Ψ𝑅⟩ with the subscript indicating which ion is 

given the positive mixed state (Fig. 2). 

 
Figure 2: The initial state layout for the experiment 

The product state of the two ions in this configuration is then 

|𝛹𝐿,𝑅
𝑃 ⟩ =

1

√2
(|±1⟩ + | ± 3⟩)⊗

1

√2
(|∓1⟩ + | ∓ 3⟩)    ( 5 ) 

which can be expanded as a coupled state 

|Ψ𝐿,𝑅
𝑃 ⟩ =

1

2
(| ± 1,∓1⟩ + | ± 3,∓3⟩ + | ± 1,∓3⟩ + | ± 3,∓1⟩) 
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The presence of the magnetic field 𝐵 𝑧̂ causes energy shifts given by 

Δ𝑈 =∑𝜇𝑖𝐵

𝑖

 

where 𝜇𝑖 is the magnetic moment of each ion. The overall energy shifts are then only nonzero for the | ±

1,∓3⟩ and | ± 3,∓1⟩ components. Because the applied magnetic field has some amount of random 

fluctuation and noise, this will cause decoherence in these states, resulting in a decoherence free subspace 

of the remaining unshifted states. After the unbalanced states are removed we are left with the entangled 

set of states 

|𝛹𝐿,𝑅⟩ =
1

√2
(| ± 1,∓1⟩ + | ± 3,∓3⟩)      ( 6 ) 

2.3 Measurement 

Under the Schrödinger equation, the state given by Eq. (6) freely evolves according to  

|𝛹𝐿,𝑅(𝑡)⟩ =
1

√2
(| ± 3,∓3⟩ + 𝑒𝑖(𝛥𝐸𝐿,𝑅𝑡/ℏ+𝜙𝐿,𝑅)| ± 1,∓1⟩)    ( 7 ) 

This looks like precession about the equator of the Bloch sphere with the two entangled states as poles 

(Fig. 3). 

 

Figure 3: An illustration of the time evolution of the state in the form of precession on the Bloch sphere 

The Bloch precession occurs at frequency  

𝜔 =
𝛥𝐸𝐿,𝑅

ℏ
         ( 8 ) 

where Δ𝐸𝐿,𝑅 is the energy difference between the entangled states | ± 1,∓1⟩ and | ± 3,∓3⟩. Thus by 

measuring the frequency, we can find the energy difference between the states. To do this we can execute 

a scheme as follows: We prepare the entangled state given by Eq. (7), wait a Ramsey duration 𝑇, and measure 

the states from an eigenbasis 

{
 

 |+𝐿,𝑅⟩ =
1

√2
(|±3,∓3⟩ + | ± 1,∓1⟩)⁡

|−𝐿,𝑅⟩ =
1

√2
(|±3,∓3⟩ − | ± 1,∓1⟩)

 

We can read from this eigenbasis by applying a 
𝜋

2
 pulse between | ± 3,∓3⟩ and | ± 1,∓1⟩ (which can be 

decomposed into individual ion transitions). This pulse acts as a unitary transformation from 

{|+𝐿,𝑅⟩, |−𝐿,𝑅⟩} to {| ± 3,∓3⟩, |±1,∓1⟩}⁡(as shown in Appendix A.1). We can read from this basis by 

applying a 𝜋 pulse from |±1,∓1⟩ to the dual ground state |(𝐹 = 0)2𝑆1
2

, (𝐹 = 0)2𝑆1
2

⁡⟩ ≡ |0,0⟩, applying a 

fluorescence pulse, and imaging with a charge-coupled device (CCD) sensor to check for fluorescence. This 

works because the 𝜋 pulse will only work for ions initially in the |±1,∓1⟩ state and the fluorescence pulse 

will only work for ions in the ground state. Thus, our measurement algorithm looks like 
𝜋

2
⁡|±1,∓1⟩⁡↔⁡|±3,∓3⟩

→ 𝜋
⁡|±1,∓1⟩⁡↔⁡|0,0⟩

→ 𝜋
⁡|0,0⟩⁡↔⁡| 𝑃⁡

2
1/2⁡, 𝑃⁡

2
1/2⟩⁡⁡

→📷⁡CCD⁡image⁡ 

https://journals.aijr.in/index.php
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with results interpreted by  

Fluorescence Detected? State 

Yes |+𝐿,𝑅⟩ 

No |−𝐿,𝑅⟩ 

 

By preparing the state from Eq. (7), waiting a time 𝑇, and measuring multiple times, we can find the 

probabilities 𝑃+(𝑇) and 𝑃−(𝑇) of finding the system in each of the |+𝐿,𝑅⟩ and |−𝐿,𝑅⟩ states. Because 

𝑃+ = |⟨+𝐿,𝑅|Ψ
𝐿,𝑅⟩|

2
= |

1

√2
(|±3,∓3⟩ + |±1,∓1⟩)

1

√2
(|±3,∓3⟩ + 𝑒

𝑖(
𝛥𝐸𝐿,𝑅𝑇

ℏ
+𝜙𝐿,𝑅)|±1,∓1⟩)⁡|

2

=

|
1

2
(1 + 𝑒

𝑖(
𝛥𝐸𝐿,𝑅𝑇

ℏ
+𝜙𝐿,𝑅))|

2

=
1

2
−
1

2
cos (

𝛥𝐸𝐿,𝑅𝑇

ℏ
+ 𝜙𝐿,𝑅)    ( 9 ) 

and similarly 

𝑃+ = |⟨−𝐿,𝑅|𝛹
𝐿,𝑅⟩|

2
= |

1

√2
(|±3,∓3⟩ − |±1,∓1⟩)

1

√2
(|±3,∓3⟩ + 𝑒

𝑖(
𝛥𝐸𝐿,𝑅𝑇

ℏ
+𝜙𝐿,𝑅)|±1,∓1⟩)⁡|

2

=

|
1

2
(1 − 𝑒

𝑖(
𝛥𝐸𝐿,𝑅𝑇

ℏ
+𝜙𝐿,𝑅))|

2

=
1

2
+
1

2
𝑐𝑜𝑠 (

𝛥𝐸𝐿,𝑅𝑇

ℏ
+ 𝜙𝐿,𝑅)    ( 10 ) 

Then taking the difference gives 

𝑃+ − 𝑃− = cos (
𝛥𝐸𝐿,𝑅𝑇

ℏ
+ 𝜙𝐿,𝑅) 

Which is a simple sinusoid at the frequency we want to measure. By then varying 𝑇 and repeating, we can 

measure the angular frequency 𝜔 =⁡
𝛥𝐸𝐿,𝑅

ℏ
 and extract the energy difference. Each time we do this, we can 

take a separate measurement for both the  |Ψ𝐿⟩ and |Ψ𝑅⟩ configurations and average the results.  This will 

cancel effects due to any magnetic field gradients that might exist in the experiment that would otherwise 

affect the data. We then take many such series of measurements throughout the day to find 𝜔(𝑡) and fit 

the results to the expected form 𝜔(𝑡) = 𝜔0 (1 + 𝐶0
(2)(𝑡)). This will allow us to extract the 𝑐𝑖𝑗 coefficients 

from our fitted 𝐶0
(2)(𝑡) by comparing our fit to Eq. (2). 

3 Procedures for State Manipulation 

3.1 Mixed State Creation 

In order to prepare the product state given by Eq. (5), we start with each ion in the ground state 2S1/2(F=0) 

≡ |0⟩. Let the transition on the left ion be indicated with subscript 𝐿 and on the right with subscript 𝑅. 

With both ions in the initial ground state, we apply the following series of pulses: 

|0⟩ ⊗ |0⟩

𝜋

2𝐿
|0⟩↔|1⟩

→   
1

√2
(|0⟩ + 𝑖|1⟩) ⊗ |0⟩⁡

𝜋𝐿
|0⟩↔|3⟩

→   
1

√2
(|3⟩ + |1⟩) ⊗ |0⟩

𝜋

2𝑅
|0⟩↔|1⟩

→   
1

√2
(|3⟩ + |1⟩) ⊗

1

√2
(|0⟩ + 𝑖|1⟩)⁡

𝜋𝑅
|0⟩↔|3⟩

→   
1

√2
(|3⟩ + |1⟩) ⊗

1

√2
(|3⟩ + |1⟩)

 

This gives us |Ψ𝐿
𝑃⟩ as in Eq. (5), and we can construct |Ψ𝑅

𝑃⟩ under exchange of 𝐿 and 𝑅 operations. 
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3.2 Rabi Durations 

For transitions to be feasible for our experiment they must have 𝜋 pulse durations 𝑇𝜋 that are low enough 

to not impede the time resolution of the experiment but long enough to be within the capabilities of our 

hardware.  To calculate 𝑇𝜋, we begin with the Rabi frequency, given by [3] 

Ω =
𝐸0
ℏ
⟨𝜓1|𝑒𝑥|𝜓2⟩ 

where |𝜓1⟩ and |𝜓2⟩ are the states with respectively lower and higher energy and 𝐸0 is the magnitude of 

the electric field due to the driving light pulse (assuming that the laser is linearly polarized along laboratory 

𝑥). We need to know the magnitude of the dipole matrix element as well as the electric field magnitude. 

The Einstein coefficient is given by [3] 

𝐴21 =
𝜔0
3

3𝜋𝜖0ℏ𝑐
3
|⟨𝜓1|𝑒𝒓|𝜓2⟩|

2 =
1

𝜏
 

where 𝜔0 is the atomic transition frequency. Because we have a singular beam linearly polarized in 𝑥, we 

can take 𝒓 → 𝑥. We can then extract the dipole matrix element magnitude 

|⟨𝜓1|𝑒𝑥|𝜓2⟩| = √
3𝜋𝜖0ℏ𝑐

3

𝜏𝜔0
3  

Next, since the intensity of the beam is given by  

𝐼 =
1

2
𝑐𝜖0|𝐸0|

2 

We can express the electric field magnitude in terms of the beam intensity 

|𝐸0| = √
2𝐼

𝑐𝜖0
 

Combining our expressions, 

Ω =
√
2𝐼
𝑐𝜖0
ℎ
√
3𝜋𝜖0ℏ𝑐

3

𝜏𝜔0
3 = √

6𝜋𝐼𝑐2

ℏ𝜏𝜔0
3  

The 𝜋 pulse period is then given by  

𝑇𝜋 =
𝜋

𝛺
= √

𝜋ℏ𝜏𝜔0
3

6𝐼𝑐2
       ( 11 ) 

3.3 467nm Baseline Transition 

The Zeeman variations of the 467nm transition will be difficult because the S1/2 to F7/2 transition is an 

electric octupole transition and therefore forbidden by standard selection rules. The experimental value of 

𝜔0 for this transition in the absence of a uniform magnetic field has been found [4] to be 

2𝜋 × 642121496772645.15(52)⁡𝐻𝑧 with fractional uncertainty 7.1 × 10−17. The state lifetime 𝜏, 

however, is not well known; it is experimentally bounded as 5.4−3.6
+9.3 years [5] and a theoretical analysis puts 

it at 8.4 years [6]. While this long lifetime gives us the extended measurement time we are looking for, it 

also significantly impedes the speed with which we can complete the transition. Using the theoretical value, 

we can estimate Eq. (11) 

𝑇𝜋 ≈
103.4

√𝐼
𝑠        ( 12 ) 

where 𝐼 is the beam intensity in W/m2. Ignoring signal loss in the optical path and assuming perfect 

incidence, a general formula for the intensity of a Gaussian beam of radius r is  

𝐼 =
2𝑃

𝜋𝑟2
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For a 12mW beam of radius 20𝜇m (the configuration used in [4]), we would have a 𝜋 pulse duration 

𝑇𝜋 ≈ 24𝑚𝑠 

This time period is easily within the bounds of what is experimentally executable and is in order-of-

magnitude agreement with the period used to drive the transition in [4]. However, in the context of this 

experiment this is a long time, making this transition the rate limiting step in how fast we can take successive 

measurements. 

In order for Eq. (11) to hold and accordingly for the transition to be reasonably fast, the width of the laser 

must be significantly less than the (power broadened) width of the transition. As the transition width is 

around 6.6Hz for .5mW focused laser power [4], we then require the laser width to be of unitary order in 

Hz. One possible method of doing so is to stabilize the transition beam with a Fabry-Pérot cavity (Fig. 4). 

 

Figure 4: Layout of the Fabry-Pérot cavity 

The cavity is a pair of concave mirrors separated by an integer number of wavelengths, with one mirror on 

a piezoelectric stage such that this distance can be finely tuned. Laser frequencies that are off resonance 

will reflect on a non-node point in the phase of the beam, which will continue to reflect at different phases 

eventually destructively interfering and effectively cancelling out.  On resonance signals, however, will 

constructively interfere. Because off resonance signals will only hit the output mirror several times before 

signal loss but on resonance signals will continue to reflect back and forth until transmittance occurs, the 

transmitted light will be almost entirely on resonance. 

3.4 2D5/2 as an Intermediary State 

Another option for the state transition is to first transition to the 2D5/2 state by the 411nm line, and then 

back down to the desired 2F7/2 state through the 3.4𝜇m line. The linewidths of these transitions are 

significantly less narrow than for the direct 467nm transition, so if laser linewidth is a limiting factor, this 

could be a more favorable option. Because the transition is an electric dipole transition, the Ramsey 𝜋 

duration is relatively small. The frequency of the 2D5/2 - 
2F7/2 transition is measured [7] to be 

2𝜋 × 87362471500(800) kHz with a natural linewidth of 22Hz.  

3.5 Ensuring State Transition 

During the application of our Ramsey pulse, the probability of the atom being in the F7/2 state 

oscillates in time as  

𝑃𝐹7/2(𝑡) = sin
2 (
Ω𝑡

2
) 

We can experimentally find the configuration-specific Ω by taking our rough estimate for 𝑇𝜋 from Eq. (12) 

and varying slightly, each time taking several measurements of the state until maximum coupling is achieved. 

Once we know 𝑇𝜋 to some experimental certainty, we can then drive the transition to the F7/2 state at such 

a certainty. To significantly reduce this uncertainty, we can employ another transition, a 369nm fluorescence 

pulse, to the ion. Since this will only cause the ion to fluoresce if the ion is in the S state and not in the F 

state, the action of applying the pulse and imaging with CCD constitutes a measurement that will collapse 

the wavefunction. Thereby, we can execute the initial excitation algorithm described in Fig. 5. 
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Figure 5: The algorithm for placing the ions into the F7/2 state 

However, by requiring imaging we potentially require a longer time to prepare the measurement state, as 

the camera triggering, capturing, processing, and logic evaluation time is of similar magnitude to the pulse 

duration of the transition.  Since we need very fine time resolution for the experiment due to the repetitive 

measurements needed to extract probability, we may choose to omit this step.  The Rabi period of the 

transition (~24ms) is greater than the imaging time (~10ms) so the time increase of this step is of order 

unity. 

3.6 Sublevels of the F7/2 Level 

The Zeeman shift for the (F=3)2F7/2 level due to the magnetic field is given by [3] 

Δ𝐸 = ⁡−𝜇𝐵 = −𝑔𝐹𝜇𝐵𝑚𝑓𝐵 

where 𝜇𝐵 is the Bohr magneton and 𝑔𝐹 is the gyromagnetic ratio, given to first order as  

𝑔𝐹 = 𝑔𝐽
𝐹(𝐹 + 1) − 𝐼(𝐼 + 1) + 𝐽(𝐽 + 1)

2𝐹(𝐹 + 1)
 

Here, 

𝑔𝐽 =
3

2
+
𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
 

And 𝑆 is the Total spin principal quantum number (=1/2), 𝐿 is the Total angular orbital momentum 

principal quantum number (=3), I is the Total nuclear spin principal quantum number (=1/2), 𝐽 is the spin-

orbital principal quantum number (=7/2), and 𝐹 is the total angular momentum principal quantum number 

(=3). For the states in question we find 

𝑔𝐹 = 1.2857 → Δ𝐸 = 1.1924 × 10
−23Δ𝑚𝑓𝐵 

The energy frequency relationship is 

𝐸 = ℏ𝜔 → Δ𝜔 =
1

ℏ
Δ𝐸⁡ 

So the change in angular frequency for a transition between two Zeeman states is  

𝛥𝜔 = 2𝜋 × 𝛥𝑚𝑓𝐵 ⋅ 17.995⁡GHz      ( 13 ) 

where 𝐵 is the experiment magnetic field in Tesla (which we will take to be 3.930 × 10−4 to be consistent 

with the calculations in the original [2] proposal). Then the energy differences within the F7/2 state lead to 

transition frequency shifts 

{
|0⟩ ↔ |±1⟩, 𝛥𝑚𝑓 = ±1, 𝛥𝜔 = ±2𝜋 × 7.053⁡MHz

|0⟩ ↔ |±3⟩, 𝛥𝑚𝑓 = ±3, 𝛥𝜔 = ±2𝜋 × 21.16⁡MHz
    ( 14 ) 
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4 Experiment-specific Hardware Layout 

The hardware functionalities needed to complete the experiment are a functional ion trap, the ability to 

generate a magnetic field perpendicular to the surface of the Earth, and the ability to generate and trigger 

the laser pulses that drive the state transitions of the experiment. 

4.1 Paul trap components 

The Paul trap uses a series of blades with electric potentials to confine the ions.  On the radial blades, RF 

potentials are applied to produce an electric potential of the form of a rotating saddle point, which confines 

the ions radially. On the axial blades, DC potentials are applied which create an axial potential minimum 

that confines the ions axially.  The configuration is shown in Fig. 6 

 

Figure 6: The Paul trap blade configuration for applying electric potentials 

4.1.1 Vacuum Chamber 

In order to prevent interaction between the ions and the background gas and to ensure the quantum system 

is isolated, we need to remove enough air from the chamber that the mean collision period between trapped 

ions and background gas is much greater than the state preparation and measurement period.  

𝜏collision ≫ 𝜏measurement 

An order of magnitude calculation is appropriate to find the required pressure for our experiment. We 

begin with an approximation for the collision time. For a more conservative estimate we will take into 

account heating interactions that could disrupt the quantum information of the system rather than just the 

Langevin collisions. Our collision rate is then given by [8] 

𝜏collision =
1

𝜆
=

1

𝑛⟨𝜎𝑣⟩
≈

1

𝑛𝜋𝛤(
1

3
)
[
16𝜖0ℎ

𝑎𝑞2
]
2/3
⟨𝑣−1/3⟩     ( 15 ) 

where 𝑞 is the electron charge and 𝑎 is the Van der Waals coefficient. 

Inside the vacuum chamber the primary gas remaining will be 𝐻2 gas, so we approximate the background 

gas as consisting entirely of 𝐻2. Assuming room temperature, we can treat the background as an ideal gas, 

where  

⟨𝑣−1/3⟩ ≈ [
3𝑘𝑇

𝑚
]
−1/6

 

and 

𝑃 = 𝑛𝑘𝑇 
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By substituting these into Eq. (15), we find  

𝑃 ≈
𝑘𝑇

𝜏collision𝜋𝛤(
1

3
)
[
16𝜖0ℎ

𝑎𝑞2
]
2/3
[
3𝑘𝑇

𝑚
]
−1/6

      ( 16 ) 

At room temperature, this gives us  

𝜏collision > 100𝑠 → 𝑃 < 10
−10 Torr 

To accomplish this, we use Ultra High Vacuum (UHV) components, with which we can reduce the pressure 

to such a value.  The vacuum configuration is shown in Fig. 7. 

 

Figure 7: The vacuum layout of the experiment for achieving UHV 

First we use an Agilent IDP3 vacuum pump to reduce the whole system to around 10-6 Torr. We then close 

the valve between the main chamber and the side chamber and the valve between the side chamber and the 

main pump. We then use the Agilent Starcell ion pump to reduce pressure to 10-9, and finally the SAES 

st172 non-evaporable getter to bring the chamber to sub-10-10 Torr. The purpose of the side chamber is to 

act as a buffer stage when breaking vacuum so that we can slowly reduce pressure in a multistage fashion. 

4.1.2 Helical Resonator 

The Paul trap requires a high voltage, low noise alternating current supply at a very narrow frequency.  To 

do this we use a traditional waveform generator and a helical resonator, a cavity with a pair of concentric 

coils coupled to a cylindrical shell to create a high gain, high quality factor, and low noise amplifier. The 

dimensions of the coil are labeled in Fig. 8. 

 

Figure 8: Dimensional labeling and layout for the helical resonator 
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The copper pipe we use has inner diameter 𝐷 = 7.62cm, and our main coil will use 10AWG wire (𝑑0 =

2.58826⁡mm). We are free to select the rest of the dimensions such that we maximize the quality factor 𝒬 

of the resonator and match the resonant frequency 𝜔0 to the needed RF frequency, given the constraints 

{
𝑏 ≤ 𝐵 −

𝐷

2
𝑏

𝑑
≥ 1

 

In our case we want 𝜔0 = 2𝜋 × 50MHz. The resonant frequency is given by [9] 

 

𝜔0 =
1

√(𝐶𝑠+𝐶𝑡+𝐶𝑤+𝐶𝐶)𝐿𝐶
       ( 17 ) 

where 𝐶𝐶 is the self-capacitance of the main coil, given by [9] 

 

𝐶𝐶 ≈

(

 
11.26𝑏

𝑑
+ 8 +

27

√𝑏
𝑑)

 𝑑 × 10−12⁡F 

 

(where dimensions are in meters), 𝐶𝑠 is the capacitance between the coil and the shield, given by [9] 

𝐶𝑠 ≈ 𝑏 ⋅ 39.37
3

4⁡log(d/D)
× 10−12 F 

 

𝐿𝐶 is the inductance of the main coil, given by [9] 

𝐿𝐶 = 𝑏

(

 
 
39.37

0.025𝑑2 (1 − (
𝑑
𝐷)

2

)

𝜏2
× 10−6

)

 
 

 H 

 

and 𝐶𝜔 and 𝐶𝑡 are the capacitances of the wiring between the trap and the resonator and of the trap itself, 

which are measured quantities. The quality factor which we wish to optimize is given by [9] 

 

𝒬 =
𝑋𝐿𝐶

(
𝑅𝑐𝑋𝐶𝐶

2

𝑅𝐶
2+(𝑋𝐶𝐶

+𝑋𝐿𝐶
)
2+

𝑅𝑡𝑋𝑅
2

𝑅𝑡
2+(𝑋𝑅+𝑋𝑇)

2+𝑅𝑠+𝑅𝑗)

     ( 18 ) 

 

where 𝑅𝑡 is the measured resistance of the trap, 𝑅𝑐 is the resistance of the helical coil, 𝑋𝑅 is the equivalent 

reactance due to the capacitance between the coil and surrounding shield as well as between the ion trap 

and connecting wires, 𝑋𝐶𝐶  is the reactance due to the coil’s self inductance, 𝑋𝐿𝐶 is the reactance due to the 

antenna coil’s self inductance, and 𝑋𝑇 = 𝑋𝑅 ⁡
𝐶𝑆+𝐶𝜔

𝐶𝑡
⁡. 

In the limit of 𝑋𝐿𝐶 ≪ 𝑋𝐶𝐶 ,  𝑅𝐶 ≪ 𝑋𝐶𝐶 , and 𝑅𝑇 ≪ (𝑋𝐶𝑡 + 𝑋𝐶𝜔 + 𝑋𝐶𝑠), which is the case with a low 

resistance coil material and proper connections, we can approximate the quality factor by [9] 

 

𝒬 ≈
𝑋𝐿𝐶

𝑅𝑗+𝑅𝐶+𝑅𝑠+𝑅𝑡(

𝑋𝑅
𝑋𝑇
𝑋𝑅
𝑋𝑇
+1
)

       ( 19 ) 
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So our problem becomes 

max
B,d,τ

𝒬(Eq. 19) ⁡𝑠. 𝑡.

{
 
 
 

 
 
 

𝑑 ≥ 𝑑0
𝜏 ≥ 𝑑0

𝑏 = 𝐵 −
𝐷

2
𝑏

𝑑
≥ 1

𝜔0(Eq. 19)
= 2𝜋 × 50⁡MHz

 

 

Due to the complexity of our functions for 𝒬 and 𝜔0, analytic optimization is not possible. Instead, discrete 

numerical optimization can be done by iterating over a range of values of 𝐵, 𝑑, and 𝜏 that satisfy the first 

four conditions, throwing away values such that |𝜔0 − 2𝜋 × 50⁡MHz⁡| ≥ 1⁡MHz, and finding the 

combinations such that 𝒬 has the greatest value. To minimize the resistance, capacitance, and noise in the 

lead wires between the coil and the trap, we mount the trap directly on the vacuum feedthrough (Fig. 9). 

 

 
Figure 9: The helical resonator mounted directly on the vacuum feedthrough 

 

4.1.3 DC Electrodes 

To provide the DC voltages to the electrodes (labeled V+ in Fig. 6), we must have a way to set specific 

voltages from our control program. We design a system that uses a digital analog converter (National 

Instruments 9263 modules) to produce a base voltage in the ±10V range and operational amplifiers (Apex 

PA340CC) to scale the voltage to the ±100V range. The schematic for the op-amp board is shown in Fig. 

10. 
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Figure 10: A schematic of the op-amp board for voltage scaling 

The gain on each channel is given by  

𝐺 = 1 +
𝑅1

𝑅2
∼ 15       ( 20 ) 

Due to the artifacts and nonlinearities in both the National Instruments module and the operational 

amplifiers, to ensure exact calibration we generate a sweep of voltages with the NI, record the output of 

the op-amps, and perform a fit on the results. Inverting the fit, we have a function for the voltage to supply 

with the NI to produce the desired output voltage. 

Because the signals will travel some finite distance between the circuit board and the vacuum feedthrough, 

there is a possibility that the lines will pick up some electromagnetic interference. To address this, we can 

place a low pass filter on each line just before the feedthrough, inline with the cable.  An RLC circuit 

depticted in (Fig. 11) is appropratte, with a cutoff frequency of 10Hz. 

 
Figure 11: A schematic of the low-pass filter on the cable assembly 

4.2 Magnetic Field Generation 

A necessary component of the experiment is a stable laboratory 𝑧̂-aligned magnetic field. To generate this, 

we use current carrying coils in each dimension. We need to cancel out any existing background fields and 

produce the uniform experiment field, so the generated field must be 

𝐵⃗ gen =⁡−𝐵⃗ background
measured + 𝐵⃗ 𝑧

experiment
      ( 21 ) 
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In our trap, the center is offset form the origin along the laboratory y-axis.  This means that the field from 

the y-axis coil will have solely −𝑦̂ components, but the x-axis coil will have −𝑥̂ and +𝑦̂ components, and 

similarly the z-axis coil will have − 𝑧̂ and +𝑦̂ components (Fig. 12). 

 
Figure 12: A diagram of the field inducing coil and trap configuration. The relevant magnetic field lines from 

each coil to the trap origin are depicted. The green arrow living in the z-y plane depicts the z- axis coil 

contribution, the blue arrow living in the x-y plane depicts the x- axis coil contribution, and the red arrow living 

on the y-axis depicts the y-axis coil contribution. 

Let us begin by looking at the coil in 𝑧̂. The coil can be approximated as a series of concentric loops of 

current, each at a different axial position and each layer having a different radial diameter. The magnetic 

field off-axis at the trap center from a single loop of wire is given by [10] 

𝐵⃗ =
𝜇𝑜𝐼𝑎

2 cos 𝜃

2(𝑎2 + 𝑟2)3/2
[1 +

15𝑎2𝑟2 sin2 𝜃

4(𝑎2 + 𝑟2)2
+⋯] 𝑟̂

−
𝜇𝑜𝐼𝑎

2 sin 𝜃

4(𝑎2 + 𝑟2)5/2
[2𝑎2 − 𝑟2 +

15𝑎2𝑟2 sin2 𝜃 (4𝑎2 − 3𝑟2)

8(𝑎2 + 𝑟2)2
+⋯]𝜃 

where 𝑎 is the radius of the loop, 𝑟  is the vector from the loop origin to the trap center, and 𝜃 is the angle 

between the loop axis and the trap center. Re-expressing in Cartesian coordinates and using the fact that 

for our trap the y-axis displacement is fixed (≡ 𝑦0), we can write for the z axis coil 

𝐵⃗ (𝑧, 𝑎) =
𝜇𝑜𝐼𝑎

2

2(𝑎2+𝑧2+𝑦0
2)
3
2

𝑧

(𝑦0
2+𝑧2)

[1 +
15𝑎2√𝑧2+𝑦0

2 𝑦0
2

𝑦0
2+𝑧2

4(𝑎2+𝑟2)2
+⋯](𝑦0𝑦̂ + 𝑧𝑧̂) ⁡−

𝜇𝑜𝐼𝑎
2

4(𝑎2+𝑧2+𝑦0
2)
5
2

𝑦0

(𝑦0
2+𝑧2)

[2𝑎2 − 𝑧2 − 𝑦0
2 +

15𝑎2𝑦0
2(4𝑎2−3(𝑧2+𝑦0

2))

8(𝑎2+𝑧2+𝑦0
2)
2 +⋯] (𝑧𝑦̂ − 𝑦0𝑧̂) ( 22 ) 

Letting 𝑑𝑤 be the diameter of the wire, 𝑛𝑡 be the number of turns per layer, 𝑛𝑙 be the number of layers, 𝑧0 

and 𝑎0 be the minimum distance and radius, we can express the total magnetic field at the trap center due 

to the z-axis coil as a summation of the contributions from each loop 

𝐵⃗ tot
z coil =⁡∑ ⁡∑ 𝐵⃗ (𝑧0 + (𝑖 +

1

2
) 𝑑𝑤 , ⁡𝑎0 + (𝑗 +

1

2
) 𝑑𝑤)

𝑛𝑙−1
j=0

𝑛𝑡−1
𝑖=0      (23 ) 

Using the formulation of 𝐵⃗ (𝑧, 𝑎) from Eq. (22). A similar calculation can be done for the 𝑥 – aligned coil 

by replacing 𝑧, 𝑧̂, and 𝑧0 with 𝑥, −𝑥, and 𝑥0 respectively. Note that we must negate the unit vector because 

the x-axis coil is located on the axis on the 𝑥 > 0 side whereas, the z-axis coil is located on the axis on the 

𝑧 < 0 side as defined by our geometric convention. 
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Finally, calculating the field due to the y-axis coil is much simpler because it will be on-axis with the trap 

center.  Such a field due to a single loop is given by [10] 

𝐵⃗ y coil = −
𝜇0𝐼𝑎

2

2(𝑎2+(𝑦−𝑦0)2)3/2
𝑦̂         (24 ) 

To give the desired field magnitude with a maximum current of 4A per coil, we use coils of 7 layers of 31 

turns on the x- and z- axes and a coil of 7 layers and 7 turns on the y-axis. Plugging in the dimensions of 

our trap layout (done in Mathematica in Appendix B.1) to Eq. (23) and Eq. (24), we can express the 

magnetic field in terms of the currents supplied to each coil. 

𝐵⃗ = 10−5 ([
−18.9744
2.4984
0

] 𝐼𝑥 + [
0

−24.7402
0

] 𝐼𝑦 +⁡[
0

2.4984
18.9744

] 𝐼𝑧) 

where each current is in Amperes and we define each current to be positive when it is aligned such that the 

induced field will point towards the trap center. We can then solve for the necessary currents 

[

𝐼𝑥
𝐼𝑦
𝐼𝑧

] = 105 [
−18.9744 0 0
2.4984 −24.7402 2.4984
0 0 18.9744

]

−1

𝐵⃗ gen 

where 𝐵⃗ gen is the field given by Eq. 21 in Tesla. Explicitly, this gives 

[

𝐼𝑥
𝐼𝑦
𝐼𝑧

] = [
−5270.3 0 0
−532.22 −4042.0 532.22

0 0 5270.3
] [

−𝐵𝑥
bg

−𝐵𝑦
bg

−𝐵𝑧
bg
+ 𝐵𝑧

exp

]

⁡

     (25 ) 

According to the National Centers for Environmental Information’s World Magnetic Model, the magnetic 

field of the Earth in Bloomingtion Indiana (39.1653 ̊  N, 86.5264 ̊  W, 771’ elevation) is 

𝐵⃗ bg = [
2.04 × 10−5

1.56 × 10−5

4.81 × 10−5
] ⁡T 

When mapping cardinal directions to laboratory defined coordinates (𝑥 = S, 𝑦̂ = W). To cancel this field 

and generate the necessary field for the experiment of 3.930 × 10−4 T in 𝑧̂, we need currents 

[

𝐼𝑥
𝐼𝑦
𝐼𝑧

] = [
−5270.3 0 0
−532.22 −4042.0 532.22

0 0 5270.3
] [
−2.04 × 10−5

−1.56 × 10−5

2.91 × 10−4
]⁡⁡ = [

. 1075

. 1720
1.5337

]A⁡ 

While the actual field produced by the coils is likely to differ from the theoretical calculation for systematic 

reasons (imperfect winding of coils, dimensions not exactly matching 3d modeling, etc.), this calculation 

will at least put us in a starting point for calibration, which we can do either with a hall sensor or using the 

trapped ions themselves as probes. 

4.3 Laser Pulse Generation 

We need to produce stable and narrow laser pulses at various wavelengths to drive the atomic transitions 

of the experiment.  Table 1 enumerates these. The Zeeman transition wavelengths come from Eq. 14. 

Table 1: A table of required transition frequencies for the experiment 

Frequency Purpose 

𝑓0 − 21.16⁡MHz |0⟩ ↔ | − 3⟩ transition 

𝑓0 − 21.16⁡MHz |0⟩ ↔ | − 1⟩ transition 

𝑓0 − 21.16⁡MHz |0⟩ ↔ | + 1⟩ transition 

𝑓0 − 21.16⁡MHz |0⟩ ↔ | + 3⟩ transition 

811.4 THz S1/2 – P1/2 fluorescence pulse 
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Here, 𝑓0 is the baseline frequency discussed in section 3.3 with value 642121496772645.15(52) Hz [4].  To 

produce these frequencies we use separate sources for the 811.4 THz and baseline 𝑓0 beams and use 

acousto-optic modulators (AOMs) to shift the frequency of the baseline beam to the various order 10 MHz 

shifts. Fig. 13 depicts a layout for generating and controlling the transition pulses.  

 
Label No. Component Label No. Component 

1 467nm baseline source 8,16 Photodetector 

2,9,11,19,20 Optical fiber coupler 10 369nm source 

3,18 AOM 21 Beam combiner 

4,6,12,13,17 Polarizer-polarizing beamsplitter pair 22,23,25,26 Mirror 

5,14 Wavemeter 27 Ion trap window 

7,15 Fabry-Pérot cavity   

Figure 13: A diagram of the optical breadboard setup for the creation and application of  

various laser profiles for preforming atomic transitions 

The 881.4THz (369nm) beam is sent through an AOM (No. 3) to allow us to tune the beam and turn the 

signal on an off quickly according to the desired Rabi period. Then the beam is sent through a polarizer-

polarizing beamsplitter pair (No. 4) which allows us to select the intensity of the beam that split off.  We 

partition a small intensity to send to a wavemeter (No. 5) to monitor the frequency. We use a another 

beamsplitting pair (No. 6) to remove another small portion of the beam and send it through a Fabry-Pérot 

cavity (No. 7) as discussed in section 3.3. The ouput of the Fabry-Pérot cavity is sent to a photodetector 

(No. 8) to allow this beampath to function as an interferometer, which will serve as a feedback signal to 

our laser locking. This way, the wavemeter lets us find our frequency with MHz precision and the Fabry-

Pérot interferometer lets us find and lock the frequency to the single Hz level. The baseline 𝑓0 (467nm) 

beam has a small stabilization reference signal split off by (No. 12), which is then split again between a 

similar wavemeter (No. 14) and Fabry-Perot interferometer (No. 15,16) pair to lock the frequency. The 

signal is then sent through a series of polarizer-beamsplitter pairs (No. 17) which split the signal into our 
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four F7/2 transition beams.  Each beam is sent through its own AOM (No. 18) to frequency shift to the 

appropriate energy. Finally, all the beams are combined in a series of beam combiners (No. 21), then sent 

through a final AOM (No. 24). By sending a superimposed driving signal to the AOM at two different 

frequencies, we can create an angular separation (𝜃1 and  𝜃2 in the inset) of the beam into two separate 

beams whose amplitudes are proportional to the amplitude of each driving frequency. By aiming these 

separated beams at the two separate ions with a set of mirrors (No. 25,26), we can then control how much 

of our beam goes to each ion by changing these amplitudes. Because we have an AOM in each beam's path, 

we can control which beams are applied at any time, and with the final AOM we can control which ion we 

address. This constitutes a complete control system. 

The AOMs require a driving signal whose frequency equals the difference between current and desired laser 

frequencies. To accomplish this, we can use a Direct Digital Synthesis (DDS) array, which uses a frequency 

reference, a numerically controlled oscillator, and a digital to analog converter to produce a waveform. This 

allows us to generate multiple channels specific frequencies on the fly which we can control with LabVIEW 

using a single reference clock. We can also include in RF switches on each channel so we can control the 

pulse timing with time resolute TTL logic from an FPGA board. The Monroe group has developed boards 

based on the Analog Devices AD9912 chip, which we can arrange in a configuration shown in Fig. 14. The 

system requires a single 1GHz stable reference clock to provide 12 driving signals. 

 

 
Figure 14: The LabVIEW-controlled DDS board array that produces multiple channels 

of configurable signal generation 
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Figure 15: A CAD model of the comprehensive experiment layout 

5 Conclusion 

In this paper we have described a configuration for executing the measurement, including a theoretical 

description of the experiment, a proposed algorithm for creating, evolving, and measuring the states, and a 

complete description of the hardware necessary for performing this algorithm. A 3-D model of the 

complete hardware layout is depicted in Fig. 15. On the bottom left is the Paul trap enclosed in the vacuum 

system, which itself is enclosed in the array of coils that produce the experiment field. Above this are the 

electronics that control vacuum components and drive the Paul trap electrodes, including the helical 

resonator and the DC array. Finally, on the right is the optics system and the experiment control computer 

running LabVIEW. The whole experiment is mounted on a vibrationally isolated table to provide 

dimensional self-stability and to prevent vibrational noise from disturbing the experiment. 

Although we have techniques for addressing it, the major difficulty of the experiment promises to be 

executing the 467nm transition to initialize the mixed state that decoheres into the measurement state based 

upon the narrow laser linewidth required and the slow Ramsey oscillation frequency of the transition. Even 

if we use the D5/2 as an intermediary state, the extended lifetime of the F7/2 state (the same characteristic we 

utilize to increase precision) implies that a narrow energy will be required to drive the transition, so there 

will inherently be issues in reliably getting to this state. However, should we overcome this issue it, should 

be possible to decrease the bounds on the LLI violation matrix element to as low as 10-23, a decrease of 

current bounds by five orders of magnitude. 
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