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1 Introduction 

Cassava (Manihot esculenta Crantz) is the third major source of carbohydrate in the world and has a wide 

range of uses and serves as food security for millions of people living in the developing world, however the 

waste from cassava processing plants is disposed of into landfills which degrade the soil as the waste 

contains cyanide which increases acidity of the soil and kills soil microorganisms on the dump site making 

the land unsuitable for agricultural use as discussed by Obueh and Odesiri-Eruyteyan [1]. Cassava is also 

used in the paper industry, food industry, textile industry, feed industry, in making wood furniture, foundry 

and in well drilling according to Save and Grow Cassava [2]. Since there is a ban on the use of synthetic 

plastics in Kenya, imposed on Monday 28 August 2017 as stated by Board [3], in an effort to reduce the 

accumulation of synthetic plastics in the environment, there is an opportunity for cassava farmers to 

produce bioplastics to meet the gap in packaging and carrying material while simultaneously reducing the 

toxic effects of cyanide in cassava waste on the soil. Cassava peel waste is one of the raw materials used in 

making environmentally friendly bioplastic as it is available in large amounts and does not compete with 

humans and animals for food as explained by Fathanah et al [4]. Unfortunately, bioplastics are unstable and 
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do not have the same tensile strength as synthetic plastic hence the adoption of the technology has been 

slow, however, plasticizers give the cassava bioplastic the tensile strength that is lacking according to 

Hongbo and Huneault [5]. This research project takes a look at two of the most popular plasticizers used 

to give tensile strength to biopolymers which are glycerol and fructose, polyols commonly used as 

thermoplastic starch plasticizers as they are both FDA-approved as food additives as further explained by 

Hongbo and Huneault [5]. Bioplastics, in the absence of a plasticizer, are brittle and unstable but plasticizers 

improve stability, water resistance and enable packaging and industrial applications according to Vieira et al 

[6]. Glycerol and fructose have been compared and contrasted in several types of thermoplastics there has 

not been a comparison with a cassava-based biopolymer being used as a bioplastic. There are several 

commercial producers of cassava-based bioplastics, however, they have kept their research and finding to 

themselves. As a result of this, the United Nations Environment Programme (UNEP) is sceptical of 

bioplastics since research information on the subject is scarce and hence has not endorsed them as discussed 

by Monks [7]. 

2 Literature Review 

2.1  Cassava Value Chain in Kenya 

Cassava (Manihot esculenta), or manioc, mandioca, and yuca, is a woody perennial in the family 

(Euphorbiaceae) is a staple crop in the tropics important for food security as stated by Shackelford et al [8]. 

According to Waisundara, the plant can be grown throughout the year and is known to exist under severe 

climates and soils that are not fertile [9]. Shackelford et al further adds that cassava also has a high yield of 

up to 60t/ha [8]. Because of these benefits, improvements in cassava quality, sustainability, and yield could 

be important for food security especially in Africa, where the projected population in 2050 is expected to 

double as explained by the United Nations (UN) [10]. Unfortunately, lack of value addition and processing 

tools along with a lack of capacity building in production and processing technologies are also contributing 

factors as to why cassava processing and marketing remain unexploited in Kenya according to Abong et al 

[11]. The processing of cassava peel waste into bioplastic in Kenya would increase the country's food 

security as production would have increased to meet demand while simultaneously adding value to the crop 

through processing tools and technologies needed to manufacture the bioplastic says Bramel et al [12]. It is 

therefore important to develop new high yielding cassava varieties, with small-granule mutations and waxy-

starch quality traits that have high demand in industrial markets states the International Center for Tropical 

Agiculture (CIAT) [13]. 

2.2  Cyanide and Cassava 

Hydrogen cyanide is released from cyanogenic glycosides when cassava is broken down by enzymes thus 

causing a great concern on how cassava is used as food, feed, and industrial raw material states the Food 

and Agriculture Organization (FAO) [14]. The cyanide level of cassava can be up to l000 ppm with sweet 

cassava having lower levels of cyanide than bitter cassava which is higher than the 10 ppm safe level set by 

the World Health Organisation (WHO) as described by Ndubuisi and Chidiebere [15]. Cyanide in cassava 

is toxic to both humans and animals and can cause death, however, processing reduces cyanogenic 

compounds to a safe level below 10 ppm and cassava can be processed into crisps, flour, and other culinary 

products according to Abong [11]. Conventional cassava processing, however, generates solid and liquid 

residues or waste that are hazardous to the environment such that when dumped into water bodies, the 

toxic cassava effluent causes oxygen depletion which results in the death of aquatic life which is why 

processing into bioplastics is a promising approach as described by Obueh and Odesiri-Eruteyan[16]. 

2.3  Biodegradability and Bioplastics 

A biodegradable compound can be defined as one that is completely used as a source of carbon for 

microbial growth as stated by Harrison et al [17]. Synthetic plastics have been widely used because they are 

lightweight, durable, malleable and low cost, however, they break down at a very slow rate in the 
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environment and hence contribute to environmental pollution according to Peplow [18]. Bioplastics are a 

promising alternative as they decompose by biotic factors and also constitute a source of organic 

compounds for microorganism though their biodegradability in different environments is highly affected 

by their chemical and physical structure as described in many reports [19]-[20]. 

2.4  Starch 

Starch is a main nutrition component of our main staple crops, including cassava and potato, and has many 

industrial uses such as a component of biodegradable plastics, and, in order to meet the needs of different 

functions, starch must have solubility, viscosity, film-forming ability according to Wang et al [21]. Cassava 

starch is particularly suitable for producing starch of excellent quality because of its low cost and white, 

sticky and lucent characteristics as stated by Ogunrinola and Akpan [22]. The physical arrangement of 

amylose (C14H26O11) and amylopectin (C30H52O26) as shown in Table 1, their molecular formula which is 

370.351 g/mol and 828.72g/mol respectively, and the interaction between food components and starch 

molecules determine the physicochemical properties of starch and in turn, these affect the potential 

applications of starch and the quality of starch-based products, such as bioplastics as described by Ahmed 

et al [23]. Starch-based bioplastics have a few limitations such as their highly hydrophilic state, which 

negatively affects barrier and tensile properties when compared with synthetic plastics, therefore, different 

approaches, such as blending must be investigated to improve these characteristics according to Sapper et 

al [24]. 

Table 1: Chemical Properties of Starch Macromolecules (Pubchem.ncbi.nlm.nih.gov, 2018) 

Chemical Name Molecular 

Formula 

Molecular 

Weight 

Molecular Structure 

Amylose 𝐶14𝐻26𝑂11 370.351 g/mol 

 

Amylopectin 𝐶30𝐻52𝑂26 828.72g/mol 
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2.4.1 Starch/Polymer Blends 

Starch as a polymer containing a continuous chain of amylose and branched chain amylopectin cannot form 

a real thermoplastic by itself, but, in the presence of a plasticizer (water, glycerol, fructose, sorbitol), high 

temperature and shearing it fluidized and melts it, thus allowing for its processability into mould and 

blowing just like conventional plastic as stated by Ogunrinola and Akpan [22]. 

2.5  Plasticizers 

Plasticizers are colourless and odourless esters, mainly phthalates, which increase the elasticity of a material 

according to Koester [25]. Starch‐based polymers are known to have poor mechanical properties and are 

notoriously brittle resulting in the need to incorporate a plasticizer, whereby, the primary function of 

plasticizers is to increase mobility of polymer chains by reducing their intermolecular forces, which help to 

increase flexibility and decrease glass transition temperature of the plasticized starch materials according to 

Edhirej et al [26]. Plasticizers enhance the desired mechanical characteristics of bioplastic film, and the 

commonly used plasticizers in starch-based films are glycerol and sorbitol as stated by Jantrawut et al [27]. 

Plasticizers are important in the production of bioplastics because they increase its flexibility and 

workability, however, they result in lower hardness as described by Maliuda et al [28]. 

2.5.1 Fructose and Glycerol 

Fructose whose molecular formula is C₆H₁₂O₆ and whose molecular weight is 180.156 g/mol as shown in 

Table 2, is a fruit sugar found in fruit juices and honey and differs from glucose in having a ketonic rather 

than an aldehydic carbonyl group as stated by PubChem [29]. PubChem further states that glycerol whose 

molecular formula is C₃H₈O₃ and whose molecular weight is 92.094 g/mol as shown in Table 2, is a 

colourless and odourless non-toxic polyol compound that has three hydroxyl groups that causes its water 

solubility and its hygroscopic nature [30]. Both glycerol and fructose are FDA-approved as food additives 

and interact strongly with starch by forming hydrogen bonds with amylopectin and amylose making them 

effective plasticizers for starch according to the U.S. Food and Drug Administration (FDA) [31].  

Table 2: Chemical Properties of Fructose and Glycerol (Pubchem.ncbi.nlm.nih.gov, 2018) 

Chemical Formula Molecular Formula Molecular Weight Molecular Structure 

Fructose 𝐶6𝐻12𝑂6 180.156 g/mol 

 

Glycerol 𝐶3𝐻8𝑂3 92.094 g/mol 
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3 Materials and Methods 

3.1 Extracting Starch 

The experiments were conducted at the University of Eastern Africa, Baraton in the Chemistry Department. 

Cassava tubers, from cassava obtained from Nairobi, were washed thoroughly to remove mud and dirt. 

They were then cut into small pieces and peeled with a machete. A cheese grater was then used to shred 

the peeled tubers. The shredded tubers were dried in an electric drier then placed in 600 cm³ and 800 cm³ 

beakers. The beakers were weighed and labelled indicating the weight of the beaker and the variety of 

cassava. Two beakers were used for extracting starch. Distilled water equal to the level of cassava in each 

beaker was added, allowing the starch to dissolve in the water. The beakers were stirred with a glass rod 

until a cloudy white precipitate (starch) had formed. The distilled water with dissolved starch was filtered 

out into another beaker using a tea strainer. The filtration process was repeated three times. The white 

precipitate was left for 30 minutes to settle and then was decanted to remove excess water. The white 

sediment (starch) was first filtered then dried using a Buchner suction filter and was collected in a separate 

beaker. Any remaining water was evaporated by air drying the semi-solid starch until it was solid. The starch 

was then weighed. 

3.2 Making the Bioplastic Film 

Distilled water (50 ml) was placed in a 50 cm³ graduated cylinder. Cassava starch (7.5 g) was and placed in 

a 50 cm³ beaker. White vinegar (5 ml) was placed in a 5 cm³ graduated cylinder. Food colouring (2 drops) 

was added to 2 ml of distilled water in a 5 cm³ graduated cylinder. Glycerol/fructose/glycerol and fructose 

(7.5 g) were placed in a 500 cm² beaker. Cooking oil was smeared on the upper surface of a watch glass. 

The beaker with the plasticizer was placed on top of a hot plate. All the other reagents were placed in this 

beaker then heated. The beaker was stirred continuously using a glass rod until the solution had become 

viscous and clear. The viscous solution was poured and smeared evenly on the watch glass with a glass rod 

while a Bunsen burner flame was passed over it to pop as many bubbles as possible. The viscous solution 

was then left to air dry.  

3.3 Data Analysis 

Data was collected and analysed using Microsoft Excel (2013), Microsoft Word (2013) and IBM SPSS 

Statistics for Windows, version 23. 

3.4 Experimental Design 

As shown in Table 3, A Randomized Complete Block Design (RCBD) was used. Four treatments 

(L1*L2*L3*L4) of bitter and sweet cassava were replicated three times. 

Table 3: A Randomized Complete Block Design (RCBD) 

Treatment Bitter Cassava Sweet Cassava 

Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 

L1 =Bioplastic only 1 1 1 1 1 1 

L2 =Bioplastic with fructose 1 1 1 1 1 1 

L3 =Bioplastic with glycerol 1 1 1 1 1 1 

L4=Bioplastic with fructose and glycerol 1 1 1 1 1 1 

3.5 Parameters Measured 

3.5.1 Film Thickness 

The film thicknesses were determined using a digital micrometre and three random measurements were 

performed for each film and an average value was calculated as described by Edhirej et al [26].  

https://journals.aijr.in/index.php
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3.5.2 Film Density 

The mass of each film sample with a film area of approximately 1 x 1 cm2 was obtained by weighing the 

film using a standard chemical digital weighing scale accurate to 0.1 g. The film volume was calculated by a 

water displacement method with a specified weight of the film. The film volume was calculated by 

multiplying the film area by the thickness as stated in many reports [28]-[32].  

𝜌 =
𝑚

𝑣
= 𝑔/𝑐𝑚³ 

Where: 𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑚 = 𝑚𝑎𝑠𝑠, 𝑎𝑛𝑑 𝑣 = 𝑣𝑜𝑙𝑢𝑚𝑒 

3.5.3 Film Moisture Content 

The moisture content of the film samples was determined by initially weighing each sample using a digital 

weighing scale. Each film sample was approximately 1 x 1 cm2. The samples were dried in an oven at 70 ºC 

for 3 hours and then reweighed. The moisture content of each film sample was calculated by subtracting 

the initial weight by the final weight, dividing the result by the initial weight, and then multiplying the result 

by 100 to get a percentage moisture content according to Sanyang et al [33]. 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = [
𝑊ᵢ − 𝑊𝑓

𝑊ᵢ
] × 100 

Where: 𝑊𝑖 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡, 𝑊𝑓 = 𝐹𝑖𝑛𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 

3.5.4 Film Solubility in Water 

Film samples with an area of approximately 1 x 1 cm2 were weighed to determine the initial dry matter of 

each film. Each sample was immersed in 50 mL of distilled water under constant agitation for 3 hours at 

room temperature.  After this period, the insoluble portion of the film was air dried for 24 hours. The dried 

samples were then reweighed to know the weight of the solubilized dry matter. The water solubility (%) of 

the films was calculated by subtracting the initial dry weight by the final dry weight, dividing the result by 

the initial dry weight, and then multiplying the result by 100 to get a percentage as discussed in many reports 

[32]-[33]. 

𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦(%)  =  [
𝑊ᵢ − 𝑊ₒ

𝑊ᵢ
]  × 100 

Where: 𝑊𝑖 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑠𝑢𝑏𝑚𝑒𝑟𝑠𝑖𝑜𝑛, 𝑊𝑜 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 𝑠𝑢𝑏𝑚𝑒𝑟𝑠𝑖𝑜𝑛 

3.5.5 Film Water Absorption 

Water uptake of film samples was investigated by weighing film samples with an area of approximately 1 x 

1 cm2. The samples were then dried at 70 ºC for 3 hours, cooled, and then immediately weighed. The film 

samples were then submerged in distilled water for 3 hours without agitation. After the immersion period, 

the samples were then removed from the water and weighed. The percentage water absorption was 

calculated by subtracting the initial weight by the final weight, dividing the result by the initial weight, and 

then multiplying the result by 100 to get a percentage as discussed in many reports [28]-[32]. 

𝑊𝑎𝑡𝑒𝑟 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛(%) = [
𝑀𝑓𝑖𝑛𝑎𝑙  − 𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙
] × 100 

Where: 𝑀𝑓𝑖𝑛𝑎𝑙 = 𝐹𝑖𝑛𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡, 𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 

3.5.6 Film Swelling Index 

The film samples with an area of approximately 1 x 1 cm2 were weighed to find their dry weight. The 

samples were then immersed in distilled water at room temperature and removed for reweighing every hour 

for three hours. The percentage water sorption capacity was calculated by subtracting the initial weight by 
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the final weight, dividing the result by the initial weight, and then multiplying the result by 100 to get a 

percentage according to Sanyang et al [33]. 

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥(%) = [
𝑀𝑆𝑤𝑜𝑙𝑙𝑒𝑛 − 𝑀𝐷𝑟𝑦

𝑀𝐷𝑟𝑦
] × 100 

Where: 𝑀𝑆𝑤𝑜𝑙𝑙𝑒𝑛 = 𝑆𝑤𝑜𝑙𝑙𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡, 𝑀𝐷𝑟𝑦 = 𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 

3.5.7 Biodegradability Test 

The biodegradability of the film samples was investigated by visual analysis changes and measuring the 

weight of the samples before and after the films were buried in soil, under natural environmental conditions. 

Each film sample was approximately 3 x 1 cm2. The film samples were half buried in 1.5 cm of ordinary 

soil resulting in half a sample being buried while half being exposed to the open air. One film sample was 

removed from the soil after a week, cleaned by wiping gently with a brush, inspected, air-dried for another 

week, inspected again and weighed. The percentage weight loss was calculated by subtracting the initial 

weight by the final weight, dividing the result by the initial weight, and then multiplying the result by 100 

to get a percentage according to Edhirej et al [32]. 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠(%) =
𝑊ᵢ − 𝑊𝑓

𝑊ᵢ
× 100 

Where: 𝑊𝑖 =  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡, 𝑊𝑓 =  𝐹𝑖𝑛𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 

4 Results 

4.1 Film Thickness 

As shown in Table 4: Cassava Film Thickness, bitter cassava bioplastic with glycerol and bitter cassava 

bioplastic with no plasticizer had the greatest film thickness for bitter cassava. The tests were conducted 

twice in order to get averages to be used for one-way ANOVA calculation. To test for the significant 

difference between the means, one-way ANOVA was applied. The p-value was 0.140 which is greater than 

the alpha value of 0.05 and therefore the difference between the means is not statistically significant. 

Table 4: Cassava Film Thickness 

Bioplastic Bitter Cassava Thickness 

(cm3) 

Sweet Cassava Thickness 

(cm3) 

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 

L1 =Bioplastic only 0.9 0.9 0.8 0.8 0.8 0.8 

L2 =Bioplastic with fructose 0.8 0.8 0.7 0.6 0.8 0.8 

L3 =Bioplastic with glycerol 0.9 0.8 0.8 0.8 0.7 0.8 

L4=Bioplastic with fructose and glycerol 0.8 0.8 0.7 0.8 0.8 0.7 

4.2 Film Density 

As shown in Table 5: Cassava Film Density, bitter cassava bioplastic with glycerol and bitter cassava 

bioplastic with no plasticizer had the highest film density in test 1 while bitter cassava bioplastic with both 

fructose and glycerol had the highest for test 2.  

Table 5: Cassava Film Density 

Bioplastic Bitter Cassava Density (g/cm3) Sweet Cassava Density (g/cm3) 

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 

L1 =Bioplastic only 1.11 1.25 1.25 1.25 1.25 1.11 

L2 =Bioplastic with fructose 1.25 1.25 1.43 1.67 1.25 1.11 

L3 =Bioplastic with glycerol 1.11 1.25 1.25 1.25 1.43 1.25 

L4=Bioplastic with fructose and glycerol 1.25 1.11 1.25 1.25 1.43 1.25 
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The tests were conducted twice in order to get averages to be used for one-way ANOVA calculation. To 

test for the significant difference between the means, one-way ANOVA was applied. The p-value is 0.681 

which is greater than the alpha value of 0.05 and therefore the difference between the means are not 

statistically significant. 

4.3 Film Moisture Content 

As shown in Figure 1: Film Average Moisture Content, the bitter cassava bioplastic with both glycerol and 

fructose had the highest average moisture content retention followed by the bitter cassava bioplastic with 

glycerol. The sweet cassava bioplastic with glycerol had the lowest average moisture content retention 

followed by the sweet cassava bioplastic with both glycerol and fructose. Bitter cassava bioplastic has a 

higher average moisture content retention than sweet cassava. This implies that the starch properties in 

bitter cassava are better at retaining moisture than those in sweet cassava. 

 

Figure 1:  Film Average Moisture Content 

4.4 Film Solubility in Water 

As shown in Figure 2: Film Solubility in Water, the bitter cassava bioplastic with fructose had the highest 

film average solubility followed by the sweet cassava bioplastic with fructose. The bitter cassava bioplastic 

with no plasticizer had the lowest film average solubility followed by the sweet cassava bioplastic with 

fructose. Fructose had the highest film average solubility implying that it is not easily hydrolysed. 

 

Figure 2: Film Solubility in Water 
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4.5 Film Water Absorption 

As shown in Figure 3: Film Average Water Absorption, both the sweet and bitter cassava bioplastics with 

no plasticizer had the highest average water absorption. The bitter cassava bioplastic with glycerol had the 

lowest average water absorption followed by the bitter cassava bioplastic with both plasticizers. This implies 

that glycerol is the most resistant to water absorption. 

 

Figure 3: Film Average Water Absorption 

4.6 Film Swelling Index 

As shown in Figure 4: Film Average Swelling Index, both the bitter and sweet cassava bioplastics with no 

plasticizer had the highest film average swelling index respectively. The bitter cassava bioplastic with 

fructose had the lowest film average swelling index followed by the sweet cassava bioplastic with both 

glycerol and fructose. This implies that the bitter cassava bioplastic with fructose has the lowest water 

resistance. 

 

Figure 4: Film Average Swelling Index 
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4.7 Biodegradability Test 

As shown in Table 6: Film Biodegradability test, both the bitter and sweet cassava bioplastic with fructose 

had the greatest weight loss after fourteen days. The sweet cassava bioplastic with both glycerol and fructose 

had the least weight loss after fourteen days.   

Table 6: Film Biodegradability Test 

Bioplastic Bitter Cassava Weight (g) Sweet Cassava Weight (g) 

Initial 

Weight 

(g) 

Weight (g) 

and % Loss 

After 7 

Days 

Weight (g) 

and % Loss 

After 14 

Days 

Initial 

Weight 

(g) 

Weight (g) 

and % Loss 

After 7 

Days 

Weight (g) 

and % Loss 

After 14 

Days 

L1 =Bioplastic only 0.13 0.08 0.04 0.19 0.11 0.03 

L2= Bioplastic with fructose 0.58 0.35  0.03 0.48 0.25 0.05 

L3 =Bioplastic with glycerol 0.30 0.22  0.10  0.24 0.18  0.08  

L4=Bioplastic with fructose and 

glycerol 

0.23 0.17  0.09 0.20 0.14 0.11 

5 Discussion 

The cassava starch-based bioplastics that were produced were similar, in terms of flexibility and elasticity, 

to the potato starch-based bioplastics done by Sanyang et al [33]. Descriptive data analysis was performed 

to explain properties of this cassava-based bioplastic containing fructose plasticizer, glycerol plasticizer, 

both plasticizers, or no plasticizer. These tests and their results were similar to a combination of various 

tests done in several experiments [26]-[32]-[33]. For the water retention tests, the fructose plasticizer 

showed better results than glycerol in the bitter cassava biopolymers, however, the glycerol plasticizer 

showed better results than fructose in the sweet cassava starch biopolymers. In the water film solubility 

tests, fructose performed better in both the bitter and sweet cassava biopolymers. In the water absorption 

tests, fructose performed better than glycerol in the sweet cassava biopolymers, however, glycerol 

performed better in the bitter cassava bioplastics. The water swelling tests showed that fructose performed 

better in the bitter cassava bioplastic but was outperformed by glycerol in the sweet cassava bioplastics. In 

the biodegradability tests, fructose performed better than glycerol in both bitter and sweet cassava 

biopolymers as it not only had the lowest weights after two weeks but also decomposed faster. These results 

are similar to those recorded in several reports [34]-[35] with their starch derived from potato and 

newspaper pulp respectively. The results show that the properties of cassava starch-based bioplastics are 

similar to those of bioplastics whose starch content has been derived from other sources. The results also 

show that the effect of fructose, glycerol and fructose and glycerol blend as plasticizers have similar 

properties on cassava starch-based bioplastics to bioplastics with different starch sources.  

6 Conclusion 

The cassava starch-based bioplastics that were produced were similar, in terms of flexibility and elasticity, 

to the potato starch-based bioplastics and other bioplastics with different sources of starch done in previous 

research. Overall, fructose as a plasticizer is recommended over glycerol and over fructose and glycerol 

because it performed better in the laboratory tests and biodegradability tests. Further analysis with more 

advanced equipment can be done to give a deeper and more critical understanding of the two plasticizers 

and the cassava bioplastic produced. Dialysis tubing can also be used to increase the purity of the 

biopolymer, to remove any monomers and or polymers smaller than a specific size. Size Exclusion 

Chromatography (SEC) can also be used to provide a desired molar mass distribution result for polymers. 
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7 Declaration 

7.1 Study Limitations 

The University of Eastern Africa Baraton laboratories lacked some essential equipment needed for Dialysis 

tubing, Size Exclusion Chromatography (SEC), and Tensile Strength testing. This equipment would have 

produced a higher quality bioplastic film.  
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